Tuesday, December 16, 2025

Wild Weather Swings

As temperatures rise, extreme weather events are striking with greater force and intensity and are occurring with longer duration and with increased frequency and ubiquity. 

The above image shows temperature anomalies of more than 28°C above 1979-2000 forecast over the Arctic Ocean for December 24, 2025 06z.

The image on the right shows a temperature forecast at the North Pole of -4.4°C or 24°F on December 14, 2025 20:00 UTC.

The image below shows how a distorted Jet Stream is forecast to form an 'Omega' pattern at 250 hPa over Greenland on December 21, 2025 18:00 UTC, with  temperatures on the east coast of Greenland forecast to be as high as 7.1°C or 44.7°F. 

Strong wind can push huge amounts of ocean heat from the Atlantic Ocean into the Arctic Ocean.  


An influx of warm, salty water into the Arctic Ocean can penetrate sediments at the seafloor of the Arctic Ocean that contain vast amounts of methane in the form of methane hydrates and free gas underneath such hydrates. Greater salinity and higher temperatures can cause such hydrates to destabilize, resulting in eruptions of huge amounts of methane and in rapid global warming. 

Such a rapid warming scenario could unfold if triggered by a stronger-than-expected El Niño event, as follows:
  1. a stronger-than-expected El Niño would contribute to
  2. early demise of the Arctic sea ice, i.e. latent heat tipping point + 
  3. associated loss of sea ice albedo, 
  4. destabilization of seafloor methane hydrates, causing eruption of vast amounts of methane that further speed up Arctic warming and cause 
  5. terrestrial permafrost to melt as well, resulting in even more emissions, 
  6. while the Jet Stream gets even more deformed, resulting in more extreme weather events
  7. causing forest fires, at first in Siberia and Canada and
  8. eventually also in the peat fields and tropical rain forests of the Amazon, in Africa and South-east Asia, resulting in 
  9. rapid melting on the Himalayas, temporarily causing huge flooding, 
  10. followed by drought, famine, heat waves and mass starvation, and
  11. collapse of the Greenland Ice Sheet.
[ image from earlier post ]
The next El Niño

[ screenshot from earlier post ]
Destabilization of methane hydrates is further illustrated by the screenshot below. 
[ screenshot from earlier post ]

Climate Emergency Declaration

UN secretary-general António Guterres recently spoke about the need for “a credible global response plan to get us on track” regarding the international goal of limiting the global temperature rise. “The science demands action, the law commands it,” Guterres said, in reference to a recent international court of justice ruling. “The economics compel it and people are calling for it.”

What could be added is that the situation is dire and unacceptably dangerous, and the precautionary principle necessitates rapid, comprehensive and effective action to reduce the damage and to improve the outlook, where needed in combination with a Climate Emergency Declaration, as described in posts such as this 2022 post and this one and as discussed in the Climate Plan group.



Links

• Japanese National Institute of Polar Research
https://ads.nipr.ac.jp/vishop

• Extreme weather
https://arctic-news.blogspot.com/p/extreme-weather.html

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• DMI (Danish Meteorological Institute) - Arctic sea ice thickness and volume
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• Kevin Pluck - Sea ice visuals
https://seaice.visuals.earth

• Climate Reanalyzer
https://climatereanalyzer.org

• The threat of seafloor methane eruptions
https://arctic-news.blogspot.com/2025/11/the-threat-of-seafloor-methane-eruptions.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• NOAA - Global Monitoring Laboratory - Data Visualisation - flask and station methane measurements
https://gml.noaa.gov/dv/iadv

• Focus on Antarctica
https://arctic-news.blogspot.com/2025/09/focus-on-antarctica.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html



Monday, December 1, 2025

The next El Nino

Arctic sea ice 

Arctic sea ice volume is at a record daily low. It has been at a record daily low for well over a year. The image below shows Arctic sea ice volume through December 13, 2025. 


The image below shows that the November 2025 Arctic sea ice volume was the lowest on record for the month of November. 
The image below, adapted from an Eliot Jacobson image, shows the annual minima of Arctic sea ice thickness through 2025.


The image below shows that the Arctic sea ice extent was at a record daily low on December 12, 2025. 


Loss of sea ice extent means that less sunlight gets reflected back into space and instead gets absorbed by the sea surface, resulting in higher temperatures, in a self-amplifying feedback loop.

The image on the right shows Arctic snow cover and sea ice concentration on December 13, 2025.

Furthermore, loss of Arctic sea ice volume can contribute to a huge rise in temperature as a result of methane erupting from the seafloor of the Arctic Ocean. As Arctic sea ice shrinks in volume, its capacity shrinks to act as a buffer that consumes ocean heat entering the Arctic Ocean from the Atlantic Ocean. As the buffer disappears, the temperature of the water can rise strongly and abruptly, causing heat to penetrate sediments that contain huge amounts of methane in the form of hydrates and free gas underneath hydrates. Heat penetrating such sediments can destabilize such hydrates, resulting in huge eruptions of methane. 

Such an event could be triggered by wild weather swings resulting from higher temperatures that come with the next El Niño that is likely to emerge and strengthen in the course of the year 2026. 

Global sea ice

The image below shows that the global sea ice extent was 3.2 million km² lower than 1981-2010 on December 15, 2025, the second lowest on record for the time of year and a deviation from 1981-2010 of -3.9σ.

Antarctic sea ice

The image below shows Antarctic sea ice extent anomalies from January 1979 through December 12, 2025. Satellite data are from NSIDC, DMSP SSM/I-SSMIS and JAXA AMSR2. Anomalies are calculated using a 5-day running mean from a 1981-2010 base. 


   [ Saltier water, less sea ice. From earlier post. ]
The above image shows that the Antarctic sea ice extent anomaly remained relatively stable for many years, but gradually increased during the period from 2007 to 2015. This increase can be attributed to rising temperatures from 2007 causing stronger evaporation of water from the Southern Ocean that resulted in increased snowfall on top of the sea ice accompanied by increased meltwater, which initially lowered salinity of the sea surface, enabling sea ice to spread. 

Meanwhile, stronger evaporation of water from the Southern Ocean also increased snowfall over Antarctica, where a significant part of the snow has remained on top of the snow cover. Eventually, in 2015, this started to overwhelm the earlier impact.  Increasingly stronger evaporation of water from the Southern Ocean therefore contributes to make the sea surface more salty, resulting in more rapid melting of the sea ice. The increase in snowfall on Antarctica is illustrated by the image below). 


A study led by Alessandro Silvano (2025) shows that, over the years, the Southern Ocean surface has become more hot and salty.
This is a self-amplifying feedback, in that saltier water at the ocean surface also draws up more heat from the deep ocean, making it harder for sea ice to regrow. Increasing amounts of heat and CO₂ that were previously stored in the deep ocean by sinking circumpolar waters, threaten to instead remain at the surface and cause both atmospheric temperatures and CO₂ concentrations to rise.

Surface temperatures of the sea around Antarctica off the coast of Wilkes Land were as high as 0.7°C or 33.3°F on December 12, 2025 (at the green circle), as illustrated by the image below. 


Sea ice cannot survive such high temperatures for long. The higher the water's salt content, the lower its melting point. In very salty water, sea ice will start melting at sea surface temperatures of -2°C (28.4°F). Seawater typically has a salinity of about 3.5% (35 grams of salt per liter of water). Sea ice starts melting as soon as the temperature rises to -1.8°C (28.76°F), while freshwater remains frozen as long as the temperature stays below 0°C (32°F).

As illustrated by the image below, the air temperature was -1.2°C or 29.8°F off the coast of Wilkes Land, Antarctica (green circle), on December 14, 2025 (03:00 UTC).


Both sea ice extent and concentration are currently low at both poles, contributing to high temperatures, since less sunlight gets reflected back into space and is instead absorbed by the surface. This spells bad news for Antarctic sea ice, which is expected to reach its minimum in February 2026.

The image on the right shows Antarctic snow cover and sea ice concentration on December 14, 2025, adapted from ClimateReanalyzer.

An Antarctic Blue Ocean Event (sea ice approaching a low of one million km²) threatens to occur in February 2026, with the danger that this will in turn trigger an Arctic Blue Ocean Event later in 2026.

The combination image below shows the Antarctic sea ice concentration on December 14, 2025, by the University of Bremen (left) and by NSIDC (right). The NSIDC image also shows the median Antarctic sea ice edge 1981-2010 highlighted in orange. 

The image below shows Antarctic sea ice thickness on December 15, 2025. 

The next El Niño

[ click on images to enlarge ]
The image on the right shows a NOAA update of Niño-3.4 region temperature anomalies and forecasts. NOAA considers La Niña conditions to occur when a one-month negative sea surface temperature anomaly of -0.5° C or less is observed in the Niño-3.4 region of the equatorial Pacific Ocean (5°N-5°S, 120°W-170°W). Also, there must be an expectation that the 3-month Oceanic Niño Index (ONI) threshold will be met, and an atmospheric response typically associated with La Niña is observed over the equatorial Pacific Ocean. These anomalies must also be forecasted to persist for 3 consecutive months. 

The image on the right, adapted from NOAA, shows ENSO (El Niño-Southern Oscillation) probabilities, with El Niño (red bar) emerging in the course of 2026. 

The image below, adapted from ECMWF, shows the ENSO anomalies and forecasts for developments through November 2026 in Niño3.4 (left panel) and in Niño1+2 (right panel), indicating that the next El Niño will emerge and strengthen in the course of 2026.


Moving from the depth of a La Niña to the peak of a strong El Niño in itself can make a difference in the global temperature of more than 0.5°C, as discussed in an earlier post.

Methane

The methane danger is illustrated by the image below that shows hourly average in situ methane measurements well above 2400 ppb (parts per billion). The image is adapted from an image issued by NOAA December 13, 2025. The image shows methane recorded over the past few years at the Barrow Atmospheric Baseline Observatory (BRW), a NOAA facility located near Utqiaġvik (formerly Barrow), Alaska, at 71.32 degrees North latitude.



The methane danger is discussed in many earlier posts such as this one. Seafloor methane and methane from thawing terrestrial permafrost can add significantly and abruptly to the temperature rise.  

Temperature rise


The image below shows the November 2025 temperature anomaly versus 1951-1980, based on ERA5 data. 


The NASA Land Only temperature anomalies with respect to 1880-1980 (not pre-industrial) through November 2025 shows the 1.5°C threshold crossed for all months since 2022 (black squares). The Lowess 3-year smoothing trend (red line) indicates that the 2°C threshold was crossed in 2022 and that 3°C may get crossed in 2028 if this trend continues (dashed extension). 



Notes:
• Land-only? Using land-only anomalies is important, since most people do live on land. 
• 1880-1890 base? The 1880-1890 base is not pre-industrial, yet it is more illustrative than NASA's default 1951-1980; when using a genuinely pre-industrial base, temperature anomalies are likely to be even higher (see also the boxes on the image below). 
• Red dashed line stops in 2028? The red dashed line stops in 2028 as it points at 3°C (top dotted line) crossed in 2028, which is an important threshold as humans will likely go extinct with a 3°C rise, as discussed in an earlier post.  
• Lowess trend? The Lowess trend is used by NASA by default. The dashed red line is a linear extension of the Lowess trend and points at 3°C threshold crossed in 2028, but a non-linear trend and its extension may point at an even earlier year (see also this comment).  
• NASA image? The background image is a screenshot of an image custom-made at data.giss.nasa.gov by Sam Carana; the blue textbox and the dashed and dotted lines are added for clarity.
• Timeline from 2022 to 2030? The timeline starts at 2022 as the image shows the 1.5°C threshold (bottom dotted line) to be crossed for all months since 2022 (black squares) and the Lowess 3-year smoothing trend (red line) indicates that the 2°C threshold (middle dotted line) was crossed in 2022. The timeline stops at 2030, as many politicians plan for emissions by people to continue to 2030 (and beyond), even though there may be no humans left by then, as the image illustrates. 
 La Niña/El Niño? While the 2025 anomalies were reached in the absence of El Niño conditions elevating temperatures, the next El Niño may emerge in the course of 2026 (see above).

The November 2025 temperature anomaly was 1.32°C higher than 1951-1980. The anomaly would be significantly higher when calculated from 1850-1900 (the period typically used by the IPCC as base), and even higher when calculated from a genuinely pre-industrial base. 

[ update of image from earlier post, click on images to enlarge ]

The Northern Hemisphere November 2025 temperature anomaly was 1.82°C higher than 1951-1980, and 0.5°C higher than the global anomaly, as illustrated by the image below.  

The above images also include boxes with a diagram and associated text from an earlier post, with more details regarding the size of the historic temperature rise and of the rise to come soon. 

Clearly, the Northern Hemisphere Land Only temperature anomaly is a lot higher than the global temperature anomaly, which is important since most people live on land in the Northern Hemisphere. 

Climate Emergency Declaration

UN secretary-general António Guterres recently spoke about the need for “a credible global response plan to get us on track” regarding the international goal of limiting the global temperature rise. “The science demands action, the law commands it,” Guterres said, in reference to a recent international court of justice ruling. “The economics compel it and people are calling for it.”

The image below illustrates the schism between the Climate Plan and the Status Quo. 


What could be added is that the situation is dire and unacceptably dangerous, and the precautionary principle necessitates rapid, comprehensive and effective action to reduce the damage and to improve the outlook, where needed in combination with a Climate Emergency Declaration, as described in posts such as this 2022 post and this one and as discussed in the Climate Plan group.


Links

• Danish Meteorological Institute - Arctic sea ice thickness and volume

• ClimateReanalyzer.org

• nullschool.net

• NOAA - National Centers for Environmental Prediction

• NOAA - Climate Prediction Center - EL NIÑO/SOUTHERN OSCILLATION (ENSO) 

• ECMWF

• Zach Labe - Antarctic sea ice extent and concentration 

• Saltier water, less sea ice

• The danger of abrupt eruptions of seafloor methane

• NOAA - Global Monitoring Laboratory - Data Visualisation - flask and station methane measurements
https://gml.noaa.gov/dv/iadv

• NASA - GISS Surface Temperature Analysis - custom plots
• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html






Sunday, November 23, 2025

The danger of abrupt eruptions of seafloor methane

Arctic

Vast amounts of methane are held in sediments at the seafloor of oceans, in the form of hydrates and in the form of free gas held underneath hydrates. Heat penetrating these sediments can destabilize hydrates and cause huge amounts of methane to erupt abruptly and enter the atmosphere. 

The danger has been described many times, e.g. at the threat of seafloor methane eruptions and in the video below, by International Cryosphere Climate Initiative. 

The danger is large during the Northern Summer when Arctic sea ice reaches its minimum extent and more sunlight is heating up its shallow waters. As described below, the danger is also large outside this period. 

At this time of year, Arctic sea ice is expanding rapidly, resulting in much of the Arctic Ocean getting covered with sea ice, as illustrated by the image on the right that shows Arctic sea ice concentration on November 24, 2025. 

A thin layer of sea ice has sealed off the East Siberian Sea and the Laptev Sea from the atmosphere, resulting in less heat getting transferred from these seas to the atmosphere, so more heat remains in the water. This keeps the temperature of the water high, so the danger of methane eruptions remains high. 

Furthermore, the temperature rise is hitting the Arctic stronger than elsewhere, resulting in more extreme weather events occurring in the Northern Hemisphere such as strong wind over the North Atlantic abruptly pushing much ocean heat from the North Atlantic into the Arctic Ocean, which can trigger destabilization of sediments at the seafloor of the Arctic Ocean at times when the ocean surface is sealed off by sea ice, reducing the ocean heat that can get transferred to the atmosphere. 


Such an event occurred in February 2017 when strong wind was forecast to cause above-freezing temperatures at the North Pole, as described in an earlier post that also features the above map, indicating ocean heat getting carried along the path of the Gulf Stream into the Arctic ocean.  

The image on the right shows sea surface temperatures as high as 31.2°C in the North Atlantic on November 25, 2025, while the Gulf Stream continues to push heat north toward the Arctic Ocean.

Arctic sea ice volume remains at a record daily low, as it has been for more than a year. This implies that Arctic sea ice is very thin. The image below shows Arctic sea ice volume through November 30, 2025. 


Ocean heat flowing into the Arctic Ocean causes Arctic sea ice to lose thickness and volume, reducing its capacity to act as a buffer that consumes ocean heat entering the Arctic Ocean from the North Atlantic. This means that - as sea ice thickness decreases - a lot of incoming ocean heat can no longer be consumed by melting the sea ice from below, and the heat will therefore contribute to higher temperatures of the water of the Arctic Ocean. The danger of this is described in the screenshot below, which also points at the danger of a freshwater lid forming at the surface of the North Atlantic, further reducing transfer of ocean heat to the atmosphere.

[ screenshot from earlier post ]

Arctic sea ice extent was 9.27 million km² on November 30, 2025, a record low for this time of year, which is even more significant since this daily record low extent was reached in the absence of El Niño conditions elevating the temperature. The image below was created with a screenshot from the Japanese National Institute of Polar Research

[ click on images to enlarge ]
The image below shows the anomaly. Arctic sea ice extent was 9.35 million km² on November 26, 2026, a record daily low and 1.97 million km² lower than 1981-2020 on November 26, 2025, a deviation from 1981-2010 of -3.42σ. 
The image below shows that the global sea ice extent was 3.49 million km² lower than 1981-2020 on November 26, 2025, a deviation from 1981-2010 of -5.34σ. 


Antarctica

Sea ice extent is currently low at both poles. The low global sea ice extent at this time of year combined with high sea surface temperatures spells bad news for Antarctic sea ice, which typically reaches its minimum extent in February.

The image on the right shows Antarctic snow cover and sea ice concentration on November 24, 2025.

An Antarctic Blue Ocean Event (sea ice approaching a low of one million km²) threatens to occur in February 2026, in turn triggering an Arctic Blue Ocean Event later in 2026.

The image below shows the Antarctic sea ice concentration (left) and thickness (right) thickness on November 27, 2025.


The image below shows that the Antarctic temperature was at a record daily high on November 26, 2025, 3.67°C higher than 1979-2020. The inset shows temperature anomalies that day, highlighting Antarctica.  


The image below shows the rise of the Antarctic temperature anomaly (versus 1951-1980) for the 12-month period from November through October over the years. The inset shows Antarctica from 60°S.


Higher temperatures result in decline of the snow and ice cover, which means that less sunlight gets reflected back into space and instead gets absorbed by the sea surface, resulting in higher temperatures, in a self-amplifying feedback loop.

Less Antarctic sea ice contributes strongly to lower albedo (reflectivity), due to the size of Antarctic sea ice and its proximity to the Equator. The image below, by Eliot Jacobson, shows that the 36-month running average for the Earth albedo just hit yet another new record low, at 28.693%.


Huge temperature rise

The image below shows global surface daily air temperature anomalies in °C versus 1991-2020 (ERA5 data through November 22, 2025). The added trend warns about a 10°C rise in 2026. The inset shows the rise 2023-2025. 


The image below shows that the temperature was at a record daily high on November 23, 2025. 


[ click on images to enlarge ]
What could contribute to a huge rise in temperature is methane erupting from the seafloor, triggered by higher temperatures and more wild weather swings as El Niño emerges and strengthens, which in itself could make a difference of as much as 0.5°C, as discussed in an earlier post. The image on the right shows an update of temperatures in the Niño-3.4 region.

NOAA considers La Niña conditions to occur when a one-month negative sea surface temperature anomaly of -0.5° C or less is observed in the Niño-3.4 region of the equatorial Pacific Ocean (5°N-5°S, 120°W-170°W). 

Also, there must be an expectation that the 3-month Oceanic Niño Index (ONI) threshold will be met, and an atmospheric response typically associated with La Niña is observed over the equatorial Pacific Ocean. These anomalies must also be forecasted to persist for 3 consecutive months.

The image on the right features a graph using CDAS (Climate Data Assimilation System) data that show an anomaly of -1.24°C on Nov 26, 2025.

The image on the right, adapted from ECMWF and from an earlier post, shows the ENSO anomaly and forecast for developments in Niño3.4 through November 2026, indicating the next El Niño will emerge and strengthen in the course of 2026.

The CDAS analysis below shows very low sea surface temperature anomalies (in blue) in the Niño3.4 area in the Central Pacific on November 26, 2025. Moving from the depth of a La Niña to the peak of a strong El Niño can make a difference in the global temperature of more than 0.5°C, as discussed in an earlier post.

Methane

The methane danger is further illustrated by the images below. The image directly below shows methane as high as 2601 parts per billion (ppb) recorded by the NOAA 21 satellite at 399.1 mb on November 21, 2025 PM.


The image below shows hourly in situ methane measurements well above 2400 ppb. The image is adapted from an image issued by NOAA November 23, 2025, showing methane hourly averages recorded at the Barrow Atmospheric Baseline Observatory (BRW), a NOAA facility located near Utqiaġvik (formerly Barrow), Alaska, at 71.32 degrees North latitude.


Climate Emergency Declaration

UN secretary-general António Guterres recently spoke about the need for “a credible global response plan to get us on track” regarding the international goal of limiting the global temperature rise. “The science demands action, the law commands it,” Guterres said, in reference to a recent international court of justice ruling. “The economics compel it and people are calling for it.”

What could be added is that the situation is dire and unacceptably dangerous, and the precautionary principle necessitates rapid, comprehensive and effective action to reduce the damage and to improve the outlook, where needed in combination with a Climate Emergency Declaration, as described in posts such as this 2022 post and this one and as discussed in the Climate Plan group.


Links

• Permafrost Thaw is Warming the Global Climate and Impacts Communities, Health, and Oceans - by International Cryosphere Climate Initiative 
https://www.youtube.com/watch?v=0uAcPf6-9-Q

• The threat of seafloor methane eruptions
https://arctic-news.blogspot.com/2025/11/the-threat-of-seafloor-methane-eruptions.html

• Warning of mass extinction of species, including humans, within one decade 
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Japanese National Institute of Polar Research

• NOAA - sea surface temperatures

• Cold freshwater lid on North Atlantic
• DMI (Danish Meteorological Institute) - Arctic sea ice thickness and volume
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• Kevin Pluck - Sea ice visuals
https://seaice.visuals.earth

• Climate Reanalyzer
https://climatereanalyzer.org

• The threat of seafloor methane eruptions

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• NOAA - HEAP/NUCAPS, NOAA-20 and NOAA-21 satellite recordings 
https://www.ospo.noaa.gov/products/atmosphere/soundings/heap/nucaps/new/nucaps_products.html

• NOAA - Global Monitoring Laboratory - Data Visualisation - flask and station methane measurements
https://gml.noaa.gov/dv/iadv

• Copernicus
https://pulse.climate.copernicus.eu

• Focus on Antarctica
https://arctic-news.blogspot.com/2025/09/focus-on-antarctica.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html