The February 2024 temperature (at 2 meter) was much higher than in 1951-1980, especially in the Arctic, as the above image shows.
The above image is adapted from NASA and shows an average February 2024 temperature anomaly of 1.44°C above 1951-1980, with anomalies showing up as high as 11°C.
The above image is created with NASA Land+Ocean monthly mean global temperature anomalies versus a 1900-1923 custom base, further adjusted by 0.99°C to reflect ocean air temperatures, higher polar anomalies and a pre-industrial base.
Two trends are added, the blue trend is based on all data (Jan.1880-Feb.2024) and the magenta trend is based on a shorter period (Jan.2010-Feb.2024), to better reflect variables such as El Niño and non-linear feedbacks as discussed in the page Feedbacks in the Arctic and in this recent post.
Ocean temperature
Sea surface temperatures (60°S-60°N, 0-360°E) reached a new record high of 21.22°C on March 10, 2024, in the Climate Reanalyzer daily records that go back to 1981.
Sea surface temperatures may get even higher later this year. What could make the sea surface temperature go up even higher?
[ click on images to enlarge ]
The highest daily sea surface temperatures for the year are typically reached in March.
This was the case for the previous years on record going back to 1981, except for the year 2023 when the current El Niño started to emerge, resulting in the highest peak for the year occurring in August 2023.
There is a 100% probability that El Niño will be present during the 3 months from February 2024 to April 2024, according to NOAA predictions updated February 26, 2024.
The image below shows the Northern Hemisphere Sea Surface Temperature Anomaly, January 2000-February 2024 NOAA data (degrees Celsius).
After an astonishing rise in 2023, sea surface temperatures have come down only a little bit in Winter on the Northern Hemisphere, raising the potential for a huge rise in ocean heat later in 2024 that threatens to destabilize sediments at the seafloor of the Arctic Ocean and cause huge amounts of methane to erupt and abruptly enter the atmosphere.
[ click on images to enlarge ]
Ocean heat content keeps rising at a rate of change that is non-linear, as illustrated by the image below, by Zack Labe.
North Atlantic
The animation below, from Nahel Belgherze, illustrates how much hotter the North Atlantic has been over the past 365 days, while a big rise in temperature can be expected over the next few months, due to the change in season.
In February 2024, the temperature (at 2 meter) over the North Atlantic was 1.927°C higher than 1951-1980, as illustrated by the image below.
The map below shows the North Atlantic sea surface temperature anomaly versus 1951-1980 in February 2024.
Arctic surface air temperature
The surface air temperature in the Arctic (66.5-90°N, 0-360°E) was 5.2°C above 1979-2000 on March 3, 2024, the highest anomaly on record for the time of year, as illustrated by the image below.
[ click on images to enlarge ]
Arctic sea ice
As the atmosphere and the oceans keep heating up, Arctic sea ice keeps declining. As illustrated by the image below, Arctic sea ice extent was 14.746 million km² on March 6, 2024.
As the above image shows, there are a few years with lower sea ice extent during this time of year than in 2024, which could be due to more water vapor in the air causing more precipitation in the Arctic. At this time of year, Arctic sea ice has typically reached its maximum annual extent and goes into steep descend until half September. With the change in seasons, more sunlight will be reaching the Northern Hemisphere and Arctic sea ice looks set for a steep decline over the next few months.
As illustrated by the above image, Arctic sea ice volume is already at a record low for the time of year, at a time when little or no sunlight is yet reaching the Arctic. Given that Arctic sea ice currently is not at a record low extent for the time of year, this indicates that the sea ice is very thin, due to ocean heat causing sea ice to melt from below. Moreover, as illustrated by the map below, much of the thicker sea ice is located off the east coast of Greenland. This sea ice and the purple-colored sea ice can be expected to melt away quickly with the upcoming rise in temperatures over the next few months, as also discussed in earlier posts such as this one.
Emissions and concentrations of greenhouse gases keep rising
Meanwhile, emissions keep rising. The image below, adapted from IEA, shows the increase in energy-related carbon dioxide emissions, 1900-2023.
February 2024 CO₂ was about 425 ppm (background image below). February 2023 CO₂ was 420.3 ppm (inset right). The highest annual rise on record is about 3 ppm, reached in 1998 and in 2015/2016 (inset left).
The threat
The threat of a huge, abrupt temperature rise has been described many times before, e.g. on the Threat page that describes many elements contributing to the threat, both cumulatively and interactively, with some of the content dating back as far as 2007. Another page with more background is the Extinction page.
Further illustrating the threat is the image below, adapted from Climate Reanalyzer and using a CMIP6 SSP585 model. The image shows what the temperature anomaly (at 2 meter and compared to 1851-1900) could be by 2100. Such a temperature rise may unfold much earlier when including numerous feedbacks kicking in strongly.
What can strongly contribute to such a rise is that, without the buffer constituted by thicker sea ice, an influx of ocean heat threatens to destabilize hydrates contained in sediments at the seafloor of the Arctic Ocean, resulting in eruptions of huge amounts of methane.
The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.
A double Blue Ocean Event could occur in 2024. Both Antarctic sea ice and Arctic sea ice could virtually disappear in 2024. A Blue Ocean Event (BOE) occurs when sea ice extent falls to 1 million km² or less, which could occur early 2024 for Antarctic sea ice and in Summer 2024 in the Northern Hemisphere for Arctic sea ice.
Antarctic sea ice loss
The situation regarding Antarctic sea ice extent is pictured in the image below, which shows that on December 12, 2023, Antarctic sea ice extent was 9.499 million km², a record low for the time of year.
Antarctic sea ice extent was 1.788 million km² on February 21, 2023. Antarctic sea ice extent may well be much lower in February 2024, with sea ice loss fuelled by several self-reinforcing feedback loops, as discussed in an earlier post.
Arctic sea ice loss
The situation regarding Arctic sea ice extent is pictured in the image below.
The above image shows that on December 12, 2023, Arctic sea ice extent was 9.499 million km², third lowest low for the time of year, behind 2016 and 2020.
Temperature November 2023
The above image shows the November 2023 temperature anomaly compared to a 1951-1980 base. The image below also shows the November 2023 temperature anomaly, but it is not compared to a 1951-1980 base (NASA's default), it is instead compared to a 1900-1923 base.
Of course, the temperature anomaly will be much higher when compared to pre-industrial. Further adjustments are required, because the NASA data are for sea surface temperatures (rather than temperatures of the air 2 meters above the sea surface). Also note the grey areas on the above map, signifying that no data are available for earlier years. This especially affects the Arctic, where the anomalies are highest, so disregarding these data is not appropriate. In the image below, data are adjusted by 0.99°C to reflect all this, as discussed at the pre-industrial page.
[ click on images to enlarge ]
The above image is created with NASA Land+Ocean monthly mean global temperature anomalies vs 1900-1923, adjusted by 0.99°C to reflect ocean air temperature, higher polar anomalies and a pre-industrial base. Blue: Polynomial trend based on Jan.1880-Nov. 2023 data. Magenta: Polynomial trend based on Jan. 2010-Nov. 2023 data.
The above images illustrate that temperatures are rising strongly in the Arctic, which gives a dire warning that a Blue Ocean Event could occur in Summer 2024 in the Northern Hemisphere that could further speed up global temperatures, as illustrated by the magenta-colored trend in the above image.
The situation is dire
Temperature anomalies in the Northern Hemisphere were more than 2°C above 1951-1980 recently (2.024°C in October 2023 and 2.058 in November 2023), as illustrated by the above image. Note that anomalies on the image are calculated from 1951-1980 and that anomalies from pre-industrial are higher.
Land-only temperature anomalies can be much higher than land+ocean anomalies, since oceans act as a buffer. It is therefore most important to look at the land-only temperature anomaly in the Northern Hemisphere, since that is where the highest anomalies occur, at the very places where most people live. Furthermore, as temperatures keep rising, more extreme weather events occur, with an increase in intensity, frequency, duration and area covered by such events. The urban heat island effect can further add to the rising high temperature peaks reached in cities.
The precautionary principle urges the world to closely watch peak hourly local wet-bulb globe temperatures, rather than to hide the full wrath of the temperature rise by focusing on global temperature anomalies that are compared to recent base periods and that are averaged over periods going back ten years or longer.
Temperatures are rising most rapidly in the Arctic, which contributes to the occurrence of more extreme weather events. Low temperatures in Winter in the Arctic are essential to build up ice thickness to preserve sea ice as the melting season starts.
[ Climatology temperatures are 1979-2000 averages and anomalies are calculated from 1979-2000 averages. Black line: 2023. Orange line: 2022. Grey line: 2016. ]
Arctic temperature hit a record high for the time of year on December 15, 2023, and an anomaly of 5°C, as the above image shows. Arctic anomalies are the highest in the world, as illustrated by the record 8.3°C anomaly that was reached on November 18, 2016. Since the chance that the current El Niño will slow down soon is minimal, Arctic anomalies could reach even higher records in the next few months.
On December 12, 2023, as said, Arctic sea ice extent was third lowest for the time of year, i.e. only 2016 and 2020 were lower. The years 2016 and 2020 had the highest annual temperature (a tie) on record and this annual temperature record is likely to be surpassed in 2023, while 2024 may be even worse, as the chance that the current El Niño will slow down soon is minimal.
[ Water Vapor tipping point ]
In the video below, Anton Petrov discusses the runaway greenhouse effect.
This is important, as a very small increase in solar irradiation – leading to an increase of the global Earth temperature, of only a few tens of degrees – would be enough to trigger an irreversible runaway process on Earth and make our planet as inhospitable as Venus, a recent study concludes, as discussed at this post.
A temperature rise of more than 10°C could unfold as early as by end 2026, due to contributions of gases (including water vapor), aerosols, albedo changes and further elements, in the process causing the clouds tipping point to get crossed, which could add a further 8°C to the rise.
This rise could in turn cause the water vapor tipping point to be crossed. The rise in water vapor alone could from then on suffice to push temperatures up further, in a runaway greenhouse process in which evaporation causes a global surface temperature rise of several hundred degrees Celsius.
Arctic sea ice could have been even lower in extent, had the Atlantic meridional overturning circulation (AMOC) not been slowing down. As a result of AMOC's slowing down, less ocean heat is reaching the Arctic Ocean. Instead, a huge amount of ocean heat has been accumulating in the North Atlantic and much of this heat could soon be pushed abruptly into the Arctic Ocean as storms temporarily speed up currents that carry ocean heat into the Arctic Ocean.
Arctic sea ice volume is getting very low, as illustrated by the image on the right, adapted from dmi.dk.
Meanwhile, Earth's radiation imbalance is very high, emissions are high and rising, and politicians refuse to act responsibly, all contributing to further deterioration of the situation, with the danger that ocean heat will reach and destabilize methane hydrates that are contained in sediments at the seafloor of oceans, resulting in massive methane eruptions, further pushing up global temperatures, as discussed in many earlier posts such as this one and this one.
As more people become aware of the dire situation, widespread panic may set in, as this 2007 post warned about. People may stop showing up for work, resulting in a rapid loss of the aerosol masking effect, as industries that now co-emit cooling aerosols (such as sulfates) grind to a halt. Many people may start to collect and burn more wood, resulting in an increase in emissions that speed up the temperature rise. As temperatures rise, more fires could also break out in forests, peatlands and urban areas including landfills and waste dumps, further contributing to emissions that speed up the temperature rise.
Ominously, the highest methane levels on record (surface flasks) were recently reached at Barrow, Alaska, U.S., as illustrated by the image below.
Climate Emergency Declaration
The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.
As the above image shows, the daily sea surface temperature between 60°South and 60°North reached a record high level on March 31, 2023, i.e. the highest temperature in the NOAA record that started in 1981.
This record high sea surface temperature comes as we're moving into an El Niño, as illustrated by the image on the right, adapted from NOAA.
Moving from the bottom of a La Niña to the peak of a strong El Niño could make a difference of more than half a degree Celsius, as illustrated by the image below, adapted from NOAA.
Furthermore, sunspots look set to reach a high maximum within years, and the 2022 Tonga submarine volcano eruption did add a huge amount of water vapor to the atmosphere, as discussed in an earlier post.
Even more dangerous than high global sea surface temperatures are sea surface temperatures in the North Atlantic, which have been at a record high for the time of year for some time, climbing to well above 20°C on March 29, 2023, as illustrated by the image below.
Vast amounts of heat moves from the North Atlantic into the Arctic. Around this time of year, North Atlantic sea surface temperatures are at their annual low, in line with changes in the seasons. Last year, North Atlantic sea surface temperatures reached a record high of 24.9°C in early September.
On March 15, 2023, sea surface temperatures off the east coast of North America were as much as 13.8°C or 24.8°F higher than 1981-2011, as illustrated by the above image. Sea surface temperature anomalies are also high in the Pacific, reflecting an upcoming El Niño. All this spells bad news for Arctic sea ice, which typically reaches its lowest extent in September.
The above Argo float compilation image illustrates the danger that a cold freshwater lid is forming on top of the North Atlantic.
Stronger winds along the path of the Gulf Stream can at times speed up sea currents that travel underneath this cold freshwater lid over the North Atlantic. As a result, huge amounts of warm, salty water can travel from the Atlantic Ocean toward the Arctic Ocean, abruptly pushing up temperatures and salinity levels at the bottom of the Arctic Ocean.
The above Argo float image illustrates the danger that heat can reach the seafloor. North of Norway, where the water is less than 400 m deep, temperatures higher than 5°C show up throughout the vertical water column, over a period from May 31, 2022, to March 16, 2023.
The panel on the left of the above image, from an earlier post, shows sea surface temperatures on June 20, 2020, while the panel on the right shows a bathymetry map indicating that the sea in a large part of the Arctic Ocean is very shallow.
The above map shows the thickness of Northern Hemisphere permafrost on land and below the seabed.
The above image describes how methane can escape from the permafrost and the seafloor of the Arctic Ocean.
The danger of destabilization of methane hydrates is especially large where methane is present in submarine permafrost and seas are shallow, such as the East Siberian Arctic Shelf (ESAS, see image below).
As illustrated by above compilation image, both the volume and extent of Arctic sea ice are low for the time of year.
With further melting of sea ice and thawing of permafrost, the Arctic Ocean can be expected to receive more heat over the next few years, more heat from direct sunlight, more heat from rivers, more heat from heatwaves and more ocean heat from the Atlantic Ocean and the Pacific Ocean.
The above image illustrates the danger of two tipping points getting crossed, i.e. the Latent Heat Tipping Point and the Seafloor Methane Tipping Point, resulting in rapid destabilization of methane hydrates at the seafloor of the Arctic Ocean leading to explosive eruptions of methane, as its volume increases 160 to 180-fold when leaving the hydrates.
A catastrophe of unimaginable proportions is unfolding. Life is disappearing from Earth and runaway heating could destroy all life. At 5°C heating, most life on Earth will have disappeared. When looking only at near-term human extinction, 3°C will likely suffice.
Meanwhile, current laws punish people for the most trivial things, while leaving the largest crime one can imagine unpunished: planetary omnicide!
Considering this, a Climate Emergency should be declared, supporting action including:
Institutionalization of climate deniers until rehabilitated, under national acts such as the U.S. RICO (Racketeer Influenced and Corrupt Organizations) Act and Sherman Antitrust Act.
Holding politicians accountable for omnicide (crimes against humanity and ecocide) and bringing them before the International Criminal Court in The Hague, the Netherlands, if they seek to indemnify themselves for their inadequate action on the unfolding climate catastrophe.
Local implementation of action on climate change, with Local People's Courts ensuring that implementation is based on the best-available scientific analysis, to avoid control by politicians who get bought by looters and polluters.