The old picture, with Earth well within our solar system's habitable zone |
How well is Earth's orbit around the sun positioned within the boundaries of the habitable zone? The illustration by the Wikipedia image on the right would give that impression that Earth was comfortably positioned in the middle of this zone.
What is the habitable zone? To be habitable, a planet the size of Earth should be within certain distances from its Sun, in order for liquid water to exist on its surface, for which temperatures must be between freezing point (0° C) and boiling point (100° C) of water.
In the Wikipedia image, the dark green zone indicates that a planet the size of Earth could possess liquid water, which is essential since carbon compounds dissolved in water form the basis of all earthly life, so watery planets are good candidates to support similar carbon-based biochemistries.
If a planet is too far away from the star that heats it, water will freeze. The habitable zone can be extended (light green color) for larger terrestrial planets that could hold on to thicker atmospheres which could theoretically provide sufficient warming and pressure to maintain water at a greater distance from the parent star.
A planet closer to its star than the inner edge of the habitable zone will be too hot. Any water present will boil away or be lost into space entirely. Rising temperatures caused by greenhouse gases could lead to a moist greenhouse with similar results.
The distance between Earth and the Sun is one astronomical unit (1 AU). Mars is often said to have an average distance from the Sun of 1.52 AU. A recent study led by Ravi Kopparapu at Penn State mentions that early Mars was warm enough for liquid water to flow on its surface. However, the present-day solar flux at Mars distance is 0.43 times that of Earth. Therefore, the solar flux received by Mars at 3.8 Gyr was 0.75 × 0.43 = 0.32 times that of Earth. The corresponding outer habitable zone limit today, then, would be about 1.77 AU, i.e. just a bit too far away from the Sun to sustain water in liquid form. Venus, on the other hand, is too close to the Sun (see box below).
Kopparapu calculates that the Solar System’s habitable zone lies between 0.99 AU (92 million mi, 148 million km) and 1.70 AU (158 million mi, 254 million km) from the Sun. In other words, Earth is on the edge of runaway warming.
Kopparapu says that if current IPCC temperature projections of a 4 degrees K (or Celsius) increase by the end of this century are correct, our descendants could start seeing the signatures of a moist greenhouse by 2100.
Kopparapu argues that once the atmosphere makes the transition to a moist greenhouse, the only option would be global geoengineering to reverse the process. In such a moist-greenhouse scenario, not only are the ozone layer and ice caps destroyed, but the oceans would begin evaporating into the atmosphere's upper stratosphere.
|
References
- Habitable zones around main-sequence stars: new estimates
Ravi Kumar Kopparapu et al. 2013
- Habitable Zone - Wikipedia
- Earth is closer to the edge of Sun's habitable zone
- Updated model for identifying habitable zones around stars puts Earth on the edge