Showing posts with label hydrates. Show all posts
Showing posts with label hydrates. Show all posts

Wednesday, December 11, 2019

The portent of runaway greenhouse warming

by Andrew Glikson
Earth and climate scientist
Australian National University

Figure 1. Relations between CO₂ levels in the atmosphere and mass extinctions of genera.
Carbon, the essential element underpinning photosynthesis and life, is transformed into toxic substances in the remnants of plants and organisms buried in sediments. Once released to the atmosphere in the form of CO₂, CO and methane, in large quantities these gases become lethal and have been responsible for mass extinctions of species (Fig. 1).

Figure 2. Potential heating, Carana (2019)
Given amplifying feedbacks from land and oceans triggered by rising temperatures, the concept of an upper limit of warming determined by limitation on carbon emissions alone is unlikely, since, under a rising high greenhouse gas concentration, amplifying feedbacks triggered by methane release, bushfires, warming oceans and loss of reflectivity of melting ice, temperatures would keep rising. As an example, findings show that warmer ocean water is melting hydrates and releasing methane into the sediment and waters off the coast of Washington state, at levels that reach the same amount of methane from the Deepwater Horizon blowout. Carana (2019) finds a potential for abrupt warming of 18°C or 32.4°F (Fig. 2).

Attempts at CO₂ drawdown (sequestration), if urgently applied on a global scale, may conceivably be able to slow down further warming. This article refers to natural methane reservoirs and human-induced methane emissions, indicating that, once temperatures supersede a critical level, a further rise in methane release would result regardless of restrictions of emissions.

According to Kelley (2003) a planetary “runaway greenhouse event” may be triggered when a planet overheats due to absorption of more solar energy than it can give off to retain equilibrium. As a result, the oceans may boil filling its atmosphere with steam, which leaves the planet uninhabitable, as Venus is now. Planetary geologists think there is good evidence that Venus was the victim of a runaway greenhouse effect which turned the planet into the boiling hell we see today. According to Hansen (2010): “If we burn all fossil fuels, the forcing will be at least comparable to that of the PETM, but it will have been introduced at least ten times faster. [. .] The warming ocean can be expected to affect methane hydrate stability at a rate that could exceed that in the PETM, where the rate of change was driven by the speed of the methane hydrate climate feedback, not by the nearly instantaneous introduction of all fossil fuel carbon.” In a critical review of the theory of runaway greenhouse warming, Goldblatt and Watson (2012) state: “We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one.”

The concentration of fossil carbon deposits in the form of coal, oil, natural gas, coal seam gas, permafrost methane, ice clathrates, shale oil, and oil sands, once released to the atmosphere in large quantities, generates powerful feedbacks from land, ocean, atmosphere and cryosphere. This includes further release of greenhouse gases, warming oceans, loss of reflectivity of melting ice, and bushfires, pushing temperatures further upward. With carbon dioxide concentrations rising at a rate of 2–3 parts per million (ppm) per year (October 2018: 406.00 ppm; October 2019: 408.53 ppm) and the Earth heating-up by 0.98°C since 1951-1980, the ultimate consequences of this trend belong to the unthinkable.

Through 2012, total accumulated emissions are estimated to have reached 384 GtC, with an annual amount of 43.1 billion tonnes of carbon dioxide expected to be added in 2019.

A 2016 IPCC analysis found that no more than 275 GtC of the world’s reserves of fossil fuels of 746 GtC could be emitted, if the global temperature rise is to be restricted to 2°C above pre-industrial temperatures, an impossible target since amplifying carbon feedbacks would push temperatures upwards.

According to Heede and Oreskes (2016), global reserves of oil (~171 GtC), natural gas (~95) and coal (479 GtC) add up to a total of 746 GtC. Hansen et al. (2013) estimates that recoverable fossil fuel reserves include ~120 GtC gas, ~80 GtC oil, >10,000 GtC coal, >2000 GtC unconventional gas, and ~700 GtC unconventional oil, adding up to a total of ~13,000 GtC (Fig. 3).

Figure 4. Vulnerable carbon pools. (A) Land: Permafrost ~900 GtC; High-latitude peatlands ~400 GtC;
Tropical peatlands ~100 GtC; Vegetation subject to fire and/or deforestation ~650 GtC;
(B) Oceans: Methane hydrates ~10,000 GtC; Solubility pump ~2700 GtC; Biological pump ~3300 GtC;
Total (A) + (B): ~18,050 GtC (Canadell 2007
The amount of unstable methane deposits in permafrost and methane hydrates (clathrates) in ocean sediments is of a similar order of magnitude as the amount of fossil fuel reserves. Vulnerable carbon pools include methane hydrates in sediments (~10,000 GtC), solubility and biological pump (~6000 GtC), permafrost methane (~900 GtC), and peatlands and vulnerable vegetation (~1150 GtC), adding up to a total of ~18,050 GtC (Fig. 4).

Unoxidized metastable deposits of methane and methane hydrates, accumulated during the Pleistocene glacial-interglacial cycles and vulnerable to temperature rise, are already leaking as indicated by atmospheric concentrations which have risen from 1988 (~1700 ppb CH₄) to 2019 (~1860 ppb CH₄) at a rate of ~5.2 ppb/year, a rise of more than 4 ppm CO₂-equivalent at GWP25xCO₂ or 24 ppm CO₂-e at GWP150xCO₂.


Meinshausen et al. (2011) estimated global-mean surface temperature increases, applying a climate sensitivity of 3°C per doubling of CO₂, resulting by 2100 in a temperature rise of between 1.5°C to 4.5°C relative to pre-industrial levels. By 2300, under constant emissions, CO₂ concentrations would rise to ~2000 ppm, methane to 3.5 ppm and nitrous oxide to 0.52 ppm (Fig. 5). Amplifying feedbacks are taken into account, but the effects of tipping points and of cold ice-melt pools formed in the oceans near Greenland and Antarctica ice sheets are unclear.

Given the estimated total of exploitable hydrocarbon resources (~13.000 GtC) and of vulnerable carbon pools (~18,050 GtC), the amount released under different future climate conditions is subject to estimates:
  • Assuming mean global temperature of +2°C (above pre-industrial), with allowance made for the masking effects of sulphur aerosols, the combustion of ~2% of the fossil fuel reserves (13,000 GtC), i.e. ~260 GtC, would raise CO₂ concentration by ~130 ppm (100 GtC = 50 ppm CO₂) (Fig. 3). Combustion of ~5% of the fossil fuel reserve would raise CO₂ concentration by ~325 ppm. 
  • Under +2°C above pre-industrial, release of CO₂ from fires and other feedback effects such as melting of permafrost and release of methane would raise atmospheric carbon by at least 1 percent of vulnerable carbon pools (~18,050 GtC). 
  • The flow of ice melt water from Greenland and Antarctica into the oceans would create large regions of cold water capable of absorption of atmospheric CO₂. 
Hansen (2010) concludes: “if we burn all reserves of oil, gas, and coal, there's a substantial chance that we will initiate the runaway greenhouse. If we also burn the tar sands and tar shale, I believe the Venus syndrome [runaway greenhouse warming] is a dead certainty”Stephen Hawking (2017) appears to agree with Hansen’s warning, stating: “if the US pulls out of the Paris climate agreement it may lead to runaway global warming, eventually turning Earth's atmosphere into something resembling Venus”. Goldblatt and Watson (2012) wrote: “The ultimate climate emergency is a ‘runaway greenhouse’: a hot and water-vapor-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming … This would evaporate the entire ocean and exterminate all planetary life … We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one … However, our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak.” 

An analysis by Carana (2013) suggests that accelerated release of methane from permafrost and methane hydrates (clathrates) could trigger runaway global warming (Fig. 6). A polynomial trend for the Arctic shows temperature anomalies of +4°C by 2020, +7°C by 2030 and +11°C by 2040, threatening major feedbacks, further albedo changes and methane releases leading to global temperature anomalies of 20°C+ by 2050.

Figure 6. A polynomial 2 trend line points at global temperature anomalies (Carana 2013). A polynomial function is a function such as a quadratic, a cubic, a quartic, and so on, involving only non-negative integer powers of x.
The magnitude of the runaway greenhouse effect that now threatens to eventuate becomes evident when looking at the geological record. For example, the 55 million years-old PETM event (Paleocene-Eocene Thermal Maximum), lasting for about 100,000 years, driven by CO₂ levels as hugh as 1700 ppm, does not appear to have triggered a runaway greenhouse process. The PETM is attributed to ¹³C-depleted methane (Zeebe et al. 2009), reaching 5 - 8°C and leading to a mass extinction of 35-50% of benthic foraminifera. By sharp contrast, the current Anthropocene hyperthermal event, commencing with the industrial age and re-accelerating since about 1975, constitutes a temporally abrupt development exceeding the rate of geological hyperthermal events (Fig. 7), a rate which does not allow biological adaptation and thereby enhances a mass extinction of species (Barnosky et al. 2011).

Figure 7. A comparison of Cenozoic CO₂ rise rates and temperature rise rates, 
highlighting the extreme rise rates in the Anthropocene. From an earlier post

As Australia burns, the IPCC maintains there is time left to consume a carbon budget and to keep handing out offsets and carbon credits; at the 25th meeting of the Conference of the Parties to the United Nations Convention on Climate Change in Madrid, Australia is seeking to use "carry-over credits" to meet its pledged emissions reductions. The situation is illustrated by Sam Carana in the image below.



Andrew Glikson
Dr Andrew Glikson
Earth and climate scientist
Australian National University


Books:
- The Archaean: Geological and Geochemical Windows into the Early Earth
- The Asteroid Impact Connection of Planetary Evolution
- Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
- Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
- The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
- Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
- From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence

Links

• The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, by Malte Meinshausen et al. (2011)
https://link.springer.com/article/10.1007/s10584-011-0156-z

• Contributions to accelerating atmospheric CO₂ growth from economic activity, carbon intensity, and efficiency of natural sinks, by J. Canadell et al. (2007)
https://www.pnas.org/content/104/47/18866

• Planetary ‘Runaway Greenhouse’ Climates More Easily Triggered than Previously Thought, by Peter Kelley (2013)
https://scitechdaily.com/planetary-runaway-greenhouse-climates-more-easily-triggered-than-previously-thought

• How Likely Is a Runaway Greenhouse Effect on Earth? MIT Technology Review (2012)
https://www.technologyreview.com/s/426608/how-likely-is-a-runaway-greenhouse-effect-on-earth/

• Storms of my grandchildren: the truth about the coming climate catastrophe and our last chance to save humanity, by James Hansen (2010)
https://www.bloomsbury.com/us/storms-of-my-grandchildren-9781608195022

• The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres, by Colin Goldblatt and Andrew Watson (2012)
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2012.0004

• Low simulated radiation limit for runaway greenhouse climates, by Colin Goldblatt, et al. (2013)
https://www.nature.com/articles/ngeo1892

• Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature, by James Hansen et al. (2013)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081648

• Towards the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), by Valérie Masson-Delmotte, Panmao Zhai, Wilfran Moufouma-Okia, Anna Pirani, Jan Fuglestvedt
https://wg1.ipcc.ch/presentations/201612_Fuglestvedt_AGU_IPCC.pdf

• Global Carbon Project, Carbon Budget 2019, press release
https://www.globalcarbonproject.org/carbonbudget/19/files/Norway_CICERO_GCB2019.pdf

• Potential emissions of CO₂ and methane from proved reserves of fossil fuels: An alternative analysis, by Richard Heede and Naomi Oreskes
https://www.sciencedirect.com/science/article/pii/S0959378015300637

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Arctic Methane Impact
https://arctic-news.blogspot.com/2013/11/arctic-methane-impact.html

• A record CO2 rise rate since the KT dinosaur extinction 66 million years ago
http://arctic-news.blogspot.com/2019/11/a-record-co2-rise-rate-since-kt-dinosaur-extinction-66-million-years-ago.html

• Another link between CO2 and mass extinctions of species, by Andrew Glikson
https://theconversation.com/another-link-between-co2-and-mass-extinctions-of-species-12906


Sunday, November 17, 2019

Arctic Ocean November 2019


On November 16, 2019, there was little sea ice between Greenland and Svalbard. For reference, the image below has been added, showing coastlines for the same area.


The image on the right shows that the average air temperature (2 m) on November 15, 2019, was 4°C higher over the Arctic than during 1979-2000.
Ocean heat is rising up from the Arctic Ocean, while a wavy jet stream enables cold air to leave the Arctic and descend over North America and Eurasia. On November 13, 2019, it was warmer in Alaska than in Alabama.

The image below shows temperatures north of 80°N. The red line on the image shows the 2019 daily mean temperature up to November 16, 2019. The temperature is now well above the 1958-2002 mean (green line). The image also shows the freezing point of fresh water (273.15K, 0°C or 32°F, blue line).

The freezing point for salt water is lower, at around -2°C, or 28.4°F, or 271.2°K. In other words, a rise in the salt content of the water alone can make ice melt, i.e. even when the temperature of the water doesn't rise.


The image below shows that Arctic sea ice volume has been at record low levels for the time of year for some time.


As the image below shows, Arctic sea ice extent in the Chukchi Sea is currently very low.

[ image by Zack Labe, uploaded November 13, 2019 ]
Oceans are absorbing more than 90% of global heating, as illustrated by the image below.


Arctic sea ice used to absorb 0.8% of global heating (in 1993 to 2003). Ocean heat keeps flowing into the Arctic Ocean, carried by ocean currents, as illustrated by the image below.


As peak heat arrives in the Arctic Ocean, it melts sea ice from below. In Summer 2019, a critical tipping point was crossed; ocean heat could no longer find further sea ice to melt, as the thick sea ice that hangs underneath the surface had disappeared. A thin layer of sea ice at the surface was all that remained, as air temperatures remained low enough to prevent it from melting from above.


This indicates that the buffer has gone that has until now been consuming ocean heat as part of the melting process. As long as there is sea ice in the water, this sea ice will keep absorbing heat as it melts, so the temperature will not rise at the sea surface. The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C.


The images above and below shows very high sea surface temperature anomalies on the Northern Hemisphere for October 2015 and October 2019. In both cases, anomalies of 1.09°C or 1.96°F above the 20th century average were recorded.

The October 2015 anomaly occurred under El Niño conditions, whereas the equally-high anomaly in October 2019 occurred under El Niño/La Niña-neutral conditions, while another El Niño is likely to come in 2020. In other words, the threat is that even more ocean heat is likely to arrive in the Arctic Ocean in 2020.


The danger is particularly high in October, as Arctic sea ice starts growing in extent at the end of September, thus sealing off the water, meaning that less ocean heat will be able to escape to the atmosphere. This increases the danger that hot water will reach sediments at the Arctic Ocean seafloor and trigger massive methane eruptions.


Concentrations of carbon dioxide (CO₂, 407.8 ppm), methane (CH₄, 1869 ppb) and nitrous oxide (N₂O, 331.1 ppb) in 2018 surged by higher amounts than during the past decade, the WMO said in a recent news release and as illustrated by the image on the right, which shows that CH₄, CO₂ and N₂O levels in the atmosphere in 2018 were, respectively, 259%, 147% and 123% of their pre-industrial (before 1750) levels.

“There is no sign of a slowdown, let alone a decline, in greenhouse gases concentration in the atmosphere despite all the commitments under the Paris Agreement on Climate Change,” said WMO Secretary-General Petteri Taalas.

“It is worth recalling that the last time the Earth experienced a comparable concentration of CO2 was 3-5 million years ago. Back then, the temperature was 2-3°C warmer, sea level was 10-20 meters higher than now,” said Mr Taalas.

Global methane levels are very high. Mean global methane levels were as high as 1914 parts per billion on September 3, 2019, as discussed in a recent post. Peak methane levels as high as 2961 parts per billion were recorded by the MetOp-2 satellite on October 24, 2019, in the afternoon at 469 mb.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.

In the video below, Paul Beckwith discusses Arctic sea ice.



Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• It’s warmer in Alaska than in Alabama today
https://www.al.com/news/2019/11/its-warmer-in-alaska-than-in-alabama-today.html

• 100 weather observing stations across the U.S. are forecast to tie or break their record low temperatures
https://twitter.com/NWS/status/1194381679483375616

• NOAA - Global Heat Content
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT

• Where is global warming going? | by John Cook (2010)
https://skepticalscience.com/Where-is-global-warming-going.html

• Danish Meteorological Institute - Daily mean temperatures for the Arctic area north of the 80th northern parallel
http://ocean.dmi.dk/arctic/meant80n.uk.php

• Polar portal - Sea Ice Thickness and Volume
http://polarportal.dk/en/sea-ice-and-icebergs/sea-ice-thickness-and-volume

• WMO - Greenhouse gas concentrations in atmosphere reach yet another high
https://public.wmo.int/en/media/press-release/greenhouse-gas-concentrations-atmosphere-reach-yet-another-high

• 2020 El Nino could start 18°C temperature rise
https://arctic-news.blogspot.com/2019/11/2020-el-nino-could-start-18-degree-temperature-rise.html

• Critical Tipping Point Crossed In July 2019
https://arctic-news.blogspot.com/2019/09/critical-tipping-point-crossed-in-july-2019.html

• IPCC Report Ocean and Cryosphere in a Changing Climate
https://arctic-news.blogspot.com/2019/09/ipcc-report-ocean-and-cryosphere-in-a-changing-climate.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• When will we die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Arctic Ocean overheating
https://arctic-news.blogspot.com/2019/09/arctic-ocean-overheating.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Warning Signs
https://arctic-news.blogspot.com/2018/03/warning-signs.html





Saturday, November 16, 2019

2020 El Nino could start 18°C temperature rise

[ click on image to enlarge ]
Above image shows a blue long-term trend, based on NASA LOTI 1880-Oct.2019 data, 0.78°C adjusted to reflect ocean air temperatures (as opposed to sea surface temperatures), to reflect a higher polar anomaly (as opposed to leaving out 'missing' data) and to reflect a 1750 baseline (as opposed to a 1951-1980 baseline).

The image also shows a red short-term trend, based on NASA LOTI 2012-Oct.2019 data, similarly adjusted and added to illustrate El Niño/La Niña variability and how El Niño could be the catalyst to trigger huge methane releases from the Arctic Ocean seafloor starting in 2020 and resulting in an 18°C (or 32.4°F) temperature rise within a few years time.

To put such a temperature rise in perspective, humans will likely go extinct with a 3°C rise, while most if not all life on Earth will go extinct at 5°C rise, as discussed in an earlier post.

The image below, from a recent study, indicates that El Niño is likely to come in 2020. 

An international team of scientists are forecasting an El Niño for 2020. "The probability of 'El Niño' coming in 2020 is around 80%", says Hans Joachim Schellnhuber, Director Emeritus of the Potsdam Institute for Climate Impact Research.


Above image shows NOAA's monthly global temperature anomaly from the 20th century average, colored by the El Niño - Southern Oscillation (ENSO) phenomenon.

A recent study found that El Niño‐Southern Oscillation (ENSO) variability over the last five decades is ~25% stronger than during the preindustrial.

As the NASA map below shows, heating in October 2019 was particularly pronounced over the Arctic Ocean.


Note that the above NASA map shows anomalies from a 1951-1980 baseline.

As the image below shows, just the existing carbon dioxide and methane, plus seafloor methane releases, would suffice to trigger the clouds feedback tipping point to be crossed that by itself could push up global temperatures by 8°C, within a few years.


As described in this post and in an earlier post, a rapid temperature rise could result from a combination of elements, including albedo changes, loss of sulfate cooling, and methane released from destabilizing hydrates contained in sediments at the seafloor of oceans.

[ from an earlier post ]
The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Early warning: Physicists from Giessen, Potsdam and Tel Aviv forecast "El Niño" for 2020 — PIK Research Portal
https://www.pik-potsdam.de/news/press-releases/early-warning-physicists-from-giessen-potsdam-and-tel-aviv-forecast-el-nino-for-2020

• Very early warning signal for El Niño in 2020 with a 4 in 5 likelihood, by Josef Ludescher et al.
https://arxiv.org/abs/1910.14642

• NOAA - Monthly temperature anomalies versus El Niño
https://www.ncdc.noaa.gov/sotc/global/201909/supplemental/page-3

• Enhanced El Niño‐Southern Oscillation variability in recent decades, by Pamela Grothe et al.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083906

• NASA - GISS Surface Temperature Analysis (GISTEMP v4)

Monday, June 10, 2019

When Will We Die?


A rise of more than 5°C could happen within a decade, possibly by 2026. Humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise. In the light of this, we should act with integrity.

When will we die?

The outlook for people living now is that they will die before the end of the century. After all, even in more developed regions, people statistically die at an age below 75 years, as the image on the right illustrates.

The image calls up questions regarding possible shortening of life expectancy due to global heating.

A 2018 study by Strona & Bradshaw indicates that most life on Earth will disappear with a 5°C rise (see box on the right).

The first question therefore is whether and how fast such a rise could eventuate.

Furthermore, global heating projections for the year 2100 may seem rather irrelevant to many people, as they do not expect to be alive by the year 2100.

A second question therefore is what makes most sense, focusing on the year 2100, or on how much temperatures could rise over the next decade.

Clouds tipping point

A recent study points at a tipping point of 1,200 ppm CO₂e when marine stratus clouds start to disappear, resulting in an additional global heating of eight degrees Celsius (8°C or 14.4°F).

In other words, such a rise from clouds feedback would clearly suffice to cause extinction of most life on Earth.

Could this tipping point be crossed soon?

At its high-end, the A1F1 scenario used by the IPCC reaches a CO₂e level of 1550 ppm by the year 2100 (see screenshot below).

As discussed, the year 2100 is rather distant. The question is, could this 1,200 ppm CO₂e tipping point be crossed earlier, say, within one decade?

On May 15, 2019, scripps.ucsd.edu recorded a carbon dioxide level of 415.7 ppm at Mauna Loa, Hawaii. NOAA recorded a methane level of 1.867 ppm for December 2018. As shown at the FAQ page, methane is 150 times as potent as a greenhouse gas over the next ten years compared to carbon dioxide. Accordingly, this 1.867 ppm of methane causes global heating of 280.05 ppm CO₂e.

Seafloor methane

Imagine a burst of methane erupting from the seafloor of the Arctic Ocean that would add an amount of methane to the atmosphere equal to twice the methane that is already there. Twice the 1.867 ppm of methane is 3.734 ppm, which at 150 times the potency of carbon dioxide translates into a CO₂e of 560.1 ppm.

Adding this to the current levels of carbon dioxide and methane results in a level of 1255.85 ppm CO₂e, well exceeding the 1,200 ppm CO₂e tipping point and thus triggering the extra 8°C rise.



Above image was created with content from a recent paper by Natalia Shakhova et al. It shows that the outlook is much more grim than many people realize.


Above image illustrates the danger, as an ominous sign of what's on the way. Methane levels as high as 2.975 ppm were recorded on June 11, 2019, at 469 mb. A peak this high is likely to have originated from the seafloor.


Above image shows a solid-colored magenta area over the ESAS that afternoon, further indicating that large amounts of methane did erupt earlier that day from destabilizing sediments in the ESAS.

Koalas declared functionally extinct

The Australian Koala Foundation has declared Koalas "functionally extinct". While there still are some 80,000 Koalas left, it is unlikely that Koalas will be able to escape full extinction for long.

Climate change-driven droughts and heat waves are causing dehydration and heat stress, leading to organ failure and premature death.

A rapid temperature rise could make virtually all species on Earth go extinct. As the above-mentioned study points out, even the most robust lifeforms on Earth will likely disappear with a 5°C rise, as species on which they depend will die.

Near Term Human Extinction

For mammals, which depend on a lot of other species, extinction is likely to come earlier.  When looking at near-term human extinction, a 3°C rise from preindustrial will likely suffice to cause extinction.

In 2019, the global temperature could already be 1.85°C above preindustrial and a rapid temperature rise could take place over the next few years.

A lot of good action is possible, as described in the Climate Plan, which offers the greatest amount of flexibility in local implementation, within the constraints of the need to act on climate change as acknowledged, e.g. at the Paris Agreement.

Nonetheless, humans likely are already functionally extinct, as is most life on Earth. This may come as a surprise to many people, but that shouldn't stop people from doing the right thing.

The above image reflects the joint CO₂e impact of carbon dioxide and methane. In addition, there is the impact of further greenhouse gases, such as nitrous oxide and CFCs, as described in a recent post. There are more warming elements, such as albedo loss associated with the decline of the snow and ice cover. These warming elements could jointly push up the temperature rise to some 10°C above preindustrial, while the clouds feedback could add a further 8°C on top of that.

Sulfates do have a cooling effect, but this effect may fall away as society grinds to a halt and stops co-emitting sulfates alongside other emissions in the process of burning fuel, as Guy McPherson has pointed out repeatedly, e.g. in this recent post.

In the video below, recorded at the University of Alaska-Fairbanks on 4 April 2019, Guy McPherson explains how loss of habitat can lead to extinction of species and how global heating can lead to extinction of virtually all life on Earth.


Added below is a video edited by Tim Bob of Guy McPherson talking in Juneau, Alaska, in April, 2019.



In the video below, Examples of Rapid Extinction, Guy McPherson gives examples of species that went extinct rapidly in the past, warning that to rule out rapid extinction of humans would be foolish.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• United Nations, world population prospects, 2017, Life expectancy
https://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2017-9.pdf
https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html

• Intergovernmental Panel on Climate Change (IPCC) AR4 (2007), Working Group I: The Physical Science Basis
https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Possible climate transitions from breakup of stratocumulus decks under greenhouse warming, by Tapio Schneider et al.
https://www.nature.com/articles/s41561-019-0310-1

• FAQ #13: What is the global warming potential of methane?
https://arctic-news.blogspot.com/p/faq.html#13

• Methane hydrates
https://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

• Methane, measured by the Infrared Atmospheric Sounding Interferometer (IASI) residing on the MetOp polar orbiting satellites
https://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Greenhouse Gas Levels Keep Accelerating
https://arctic-news.blogspot.com/2019/05/greenhouse-gas-levels-keep-accelerating.html

• Stronger Extinction Alert
https://arctic-news.blogspot.com/2019/03/stronger-extinction-alert.html

• Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf, by Natalia Shakhova, Igor Semiletov and Evgeny Chuvilin
https://www.mdpi.com/2076-3263/9/6/251

• Guy McPherson at the University of Alaska-Fairbanks, April 2019
https://guymcpherson.com/2019/04/the-first-of-two-presentations-at-the-university-of-alaska-fairbanks/

• Guy McPherson in Juneau, Alaska, April 2019
https://guymcpherson.com/2019/05/presentation-in-juneau-alaska

• Seven Distinct Paths to Loss of Habitat for Humans, by Guy McPherson
https://weeklyhubris.com/seven-distinct-paths-to-loss-of-habitat-for-humans


Koalas

Koala habitat 1788 versus 2018
From: savethekoala.com
https://www.savethekoala.com/our-work/act-or-axe

• A report claims koalas are ‘functionally extinct’ – but what does that mean?
https://theconversation.com/a-report-claims-koalas-are-functionally-extinct-but-what-does-that-mean-116665

• Australian Koala Foundation calls on the new Prime Minister to protect the Koala
https://www.savethekoala.com/sites/savethekoala.com/files/uploads/AKF_press_release_10_may_2019.pdf

• Koalas become 'Functionally Extinct' in Australia with just 80,000 left
https://www.ecowatch.com/koalas-functionally-extinct-australia-2637183484.html

• Koalas declared “functionally extinct”
https://inhabitat.com/koalas-declared-functionally-extinct

• Why the Heck Do So Many Koalas Have Chlamydia?
https://www.livescience.com/62517-how-koalas-get-chlamydia.html



Monday, November 26, 2018

Dangerous situation in Arctic

In the North Pacific, the flow of warmer water is clearly visible (see images right, green circle left).

In the North Atlantic, huge amounts of heat are moving into the Arctic Ocean (green circle right).

At some spots, heat that is traveling underneath the sea surface comes to the surface (green circle at the top).

Most warming caused by people's emissions goes into oceans, especially into the top layer of oceans.

Furthermore, warmer air and warmer sea surfaces can cause winds to grow dramatically stronger. As the Arctic is warming much faster than the rest of the world, the narrowing difference between the temperatures at the North Pole and the Equator is decreasing the speed at which winds circumnavigate Earth; at the same time, the amount of heat that is moving north can grow dramatically, both due to winds and sea currents, and cyclones can further accelerate this.

The danger is that an influx of warm salty water will reach the seafloor and trigger methane eruptions.

The situation is especially critical in many parts of the Arctic Ocean where the water is very shallow. Some 75% of the East Siberian Arctic Shelf (ESAS) is shallower than 50 m (see maps on the right).
[ warm water from the Atlantic Ocean is
increasingly invading the Arctic Ocean ]





















The danger here is huge, for numerous reasons, incl.:

• shallow waters can warm up very rapidly in case of an influx of warm water;

• these shallow seas are now covered by ice, so the heat cannot escape to the atmosphere;

• sea ice is very thin, so the sea ice won't act as a buffer to absorb the heat;

• methane rising through shallow waters will pass through the water column and enter the atmosphere more quickly;

• in shallow waters, large abrupt releases will more quickly deplete the oxygen in the water, making it harder for microbes to break down the methane;

• hydroxyl levels over the Arctic are very low, which means that it takes much longer for methane over the Arctic to get broken down.

The four videos below provide a good introduction into the various issues and illustrate how dangerous the situation is in the Arctic.

Each video is part of a talk between Dave Borlace and Peter Wadhams.

Part 1 discusses albedo change in the Arctic and associated changes such as jet stream changes.



Part 2 discusses the threat of huge methane releases in the Arctic.



Part 3 discusses the thermohaline circulation and methods that could improve the situation such as carbon removal and Ocean Mechanical thermal Energy Conversion (OMTEC).



Part 4 discusses sea level rise and fires.



The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan, i.e. multiple lines of action implemented in parallel and locally where possible.


Links

• As El Niño sets in, will global biodiversity collapse in 2019?
https://arctic-news.blogspot.com/2018/11/as-el-nino-sets-in-will-global-biodiversity-collapse-in-2019.html

• Doomsday by 2021?
https://arctic-news.blogspot.com/2018/11/doomsday-by-2021.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Seismic Events
https://arctic-news.blogspot.com/p/seismic-events.html

• Can we weather the Danger Zone?
https://arctic-news.blogspot.com/2018/07/can-we-weather-the-danger-zone.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• What Does Runaway Warming Look Like?
https://arctic-news.blogspot.com/2018/10/what-does-runaway-warming-look-like.html

• Peaks Matter
https://arctic-news.blogspot.com/2018/08/peaks-matter.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html


Friday, August 24, 2018

The once-thickest Arctic sea ice has gone

The image below shows Arctic sea ice north of Greenland and around Ellesmere Island. This is the area where for thousands of years the sea ice has been the thickest, in many places remaining thicker than 5 meters (16.4 ft) throughout the year.

[ The once-thickest sea ice has gone - click on images to enlarge ]
The image is a compilation of NASA Worldview images over seven days, from August 14 through to August 21, 2018. The least cloudy areas have been selected from each image to get the best insight in the magnitude of this catastrophe.

The loss of this sea ice indicates that the buffer is gone. Sea ice acts as a buffer that absorbs heat, while keeping the temperature at the freezing point of water, about zero degrees Celsius. As long as there is sea ice in the water, this sea ice will keep absorbing heat, so the temperature doesn't rise at the sea surface.

Once the buffer is gone, further energy that enters the Arctic Ocean will go into heating up the water. The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C.

[ The Latent Heat Buffer has gone, feedback #14 on the Feedbacks page ]
At the same time, decline of the snow and ice cover in the Arctic causes more sunlight to get reflected back into space, resulting in more energy getting absorbed in the Arctic Ocean.

[ Albedo Change, feedback #1 on the Feedbacks page ]

Numerous feedbacks are associated with sea ice loss. As the temperature difference between the Arctic and the Equator decreases, changes are taking pace to the Jet Stream that in turn trigger a multitude of further feedbacks, such as more extreme weather and a more scope for heat to enter the Arctic Ocean (see feedbacks page).


A further huge danger is that, as warming of the Arctic Ocean continues, heat will reach methane hydrates at the seafloor of the Arctic Ocean, causing them to get destabilized and release methane.

[ Seafloor methane, feedback #2 on the Feedbacks page ]
Adding up all warming elements associated with disappearance of the sea ice could result in additional global warming many times as much as the current global warming, all in a few years time.

Meanwhile, for the first time in human history, mean global methane levels as high as 1900 ppb have been recorded. The measurements were recorded by the MetOp-1 satellite on the morning of August 22, 2018, at 280 mb, 266 mb, 307 mb and 321 mb, as shown by the images below.


At 293 mb, MetOp-1 recorded an even higher level, i.e. mean global methane level was 1901 ppb on the morning of August 22, 2018.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Albedo and more
https://arctic-news.blogspot.com/p/albedo.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html