Friday, February 2, 2024

Blue Ocean Event 2024?

How likely is an Arctic Blue Ocean Event (BOE) to occur in 2024 or even a Double BOE? The image below is alarming. 


The highest daily sea surface temperatures on record (going back to 1981) were reached in February 2024, even higher than the peaks in 2023. Even higher temperatures may be reached over soon, in March 2024 and April 2024.

As the above image shows, the highest temperatures for the year are typically reached in March. This was the case for the previous years on record, except for 2023 when the current El Niño started to emerge and when the highest peak for the year occurred in August. According to NOAA, the majority of models indicate that this El Niño will persist through March-May 2024. 

Antarctic sea ice extent typically reaches an annual minimum end February, while Arctic sea ice extent typically reaches an annual minimum in September, after a steep decline resulting from more sunlight reaching higher latitudes North and ocean heat reaching a second peak in August.   

Ominously, daily surface air temperatures in the Southern Hemisphere exceeded 17°C recently, something that never happened before in the record going back to 1981. Antarctic sea ice extent typically reaches an annual minimum end February. Loss of sea ice acts as a self-reinforcing feedback loop, accelerating the temperature rise. The daily surface air temperature in the Southern Hemisphere was 17.005°C on Feb 1, 2024, following a peak of 17.01°C on Jan 31, 2024.


Higher temperatures can cause sea ice to melt, even out of season

As illustrated by the image below, adapted from Pidwirny, sunlight does not reach the North Pole until the March Equinox. From that time on, insolation rises steeply. Around the June Solstice, more sunlight reaches the North Pole than anywhere else on Earth. In the image below, insolation is calculated taking into account the combined effects of angle of incidence and day length duration. 

The conclusion is that ocean heat is the main reason why melting of Arctic sea ice can occur early in the year. More specifically, the narrowing of the temperature difference between the Arctic and the Tropics can at times cause strong wind to be present along the path of the Gulf Stream. Rising ocean heat combined with strong wind can cause heat to move abruptly toward the Arctic Ocean, causing sea ice to fall in extent. 

Such an event is illustrated by the image below, adapted from NSIDC. The image shows a drop in sea ice extent at the end of January 2024 (blue), a time of year when Arctic sea ice is still expected to increase in extent and to keep increasing in extent for some time to come (grey). In this case, strong wind may have caused a huge amount of ocean heat that is present in the North Atlantic to move abruptly toward the Arctic Ocean, as discussed in an earlier post

For the time of year, Arctic sea ice extent is currently still extensive, compared to earlier years, which is a reflection of more water vapor in the atmosphere and more precipitation. While sea ice extent is relatively large, sea ice volume is among the lowest of all years on record for the time of year, as illustrated by the image below. 

This indicates that Arctic sea ice is very thin. Ominously, the image below indicates that there is a huge area near the North Pole with very thin sea ice. 


Furthermore, much of the thicker sea ice is located off the east coast of Greenland, which means that this sea ice is likely to melt away quickly as more sunlight starts reaching the Northern Hemisphere and temperatures rise in line with seasonal changes (see the insolation image further above).


The North Atlantic sea surface temperature was 20.4°C on February 15, 2024, i.e. 0.6°C higher than on February 15, 2023.

High North Atlantic sea surface temperatures spell bad news for the Arctic, as much ocean heat gets pushed toward the Arctic from the North Atlantic. 

North Atlantic sea surface temperatures are just starting to heat up from their annual minimum and can be expected to rise strongly, in line with seasonal changes. 

[ click on images to enlarge ]
Ominously, a peak temperature of 25.4°C was reached on Aug.31, 2023, much higher than the peak in any of the preceding years dating back to 1981.

During the six months between the September Equinox and the March Equinox (see image further above), no sunlight is reaching the North Pole. 

Nonetheless, temperature anomalies in the Arctic are already extremely high, due to ocean heat that has entered the Arctic Ocean from the North Atlantic, as illustrated by the two maps on the right and the two maps on the right further below.

Northern Hemisphere Sea Surface Temperature Anomalies were as much as 12.6°C or 22.7°F higher than 1981-2011 on February 15, 2024, locarion marked by the green circle on the image below.


Feedbacks 

Slowing down of AMOC and cooling due to heavier melting of Greenland's ice is causing less ocean heat to reach the Arctic Ocean, while a huge amount of ocean heat is accumulating in the North Atlantic, as it did in 2023. A large part of this heat in the North Atlantic can also be present underneath the sea surface.

These developments occur at the same time as ocean stratification increases (as temperatures rise, see above images), as more freshwater enters the ocean (as a result of more meltwater and of runoff from land and from rivers), and as more evaporation takes place and more rain falls further down the path of the Gulf Stream, all of which can contribute to formation and growth of a cold, freshwater lid at the surface of the North Atlantic.

cold freshwater lid on North Atlantic ]

Furthermore, storms can get stronger as temperatures rise and as changes take place to the Jet Stream. Strong wind can temporarily speed up currents that carry huge amounts of ocean heat with them toward the Arctic Ocean, as discussed in earlier posts such as this one. Much of the ocean heat in the North Atlantic can therefore be pushed abruptly underneath this freshwater lid and flow into the Arctic Ocean. The image below shows that the Jet Stream reached speeds as high as 455 km/h or 283 mph north of Washington on February 18, 2024 03:00 UTC, with Instantaneous Wind Power Density as high as 387.5 kW/m².


The image below shows wind speed at 250 hPa on a background of sea surface temperature anomalies versus 1981-2011. 


The danger is that, due to strong wind along the path of the Gulf Stream, huge amounts of ocean heat will abruptly get pushed into the Arctic Ocean, with the influx of ocean heat causing destabilization of hydrates contained in sediments at the seafloor of the Arctic Ocean, resulting in eruptions of huge amounts of methane.

Changes to the Jet Stream and ocean heat accumulating in the North Atlantic Ocean are both consequences of the overall temperature rise. A distorted Jet Stream can cause an abrupt influx of ocean heat into the Arctic Ocean.

Such additional ocean heat, combined with a steep rise in insolation hitting the Arctic in April and May, may suffice to cause a Blue Ocean Event (BOE) to occur in 2024.

[ click on images to enlarge ]
The far North has the highest temperature anomalies, they can as high as 7.04°C, as the image on the right shows.

A BOE occurs when virtually all sea ice disappears and less than 1 million km² of sea ice remains. As the sea ice disappears, the surface color changes from white (sea ice) to blue (ocean) resulting in far more sunlight getting absorbed by the Arctic Ocean, instead of getting reflected back into space as was previously the case.

Albedo change constitutes a huge self-reinforcing feedback loop, i.e. the more sea ice disappears, the more sunlight gets absorbed by the Arctic Ocean, further accelerating sea ice melting. 

[ Albedo change, from the Albedo page ]

Next to the albedo loss, there is loss of the latent heat buffer constituted by the sea ice. Latent heat is energy associated with a phase change, such as the energy consumed when solid ice turns into water (i.e. melts). During a phase change, the temperature remains constant. Sea ice acts as a buffer that absorbs heat, while keeping the temperature at about zero degrees Celsius. As long as there is sea ice in the water, this sea ice will keep absorbing heat, so the temperature doesn't rise at the sea surface.

The amount of energy absorbed by melting ice is as much as it takes to heat up an equivalent mass of water from zero to 80°C. 

Without the buffer constituted by thicker sea ice, an influx of ocean heat could destabilize hydrates contained in sediments at the seafloor of the Arctic Ocean, resulting in eruptions of huge amounts of methane.

[ click on images to enlarge ]
The above image illustrates these tipping points and Northern Hemisphere Ocean Temperature anomalies vs 1901-2000, created with NOAA data. Trends and tipping point estimates are added. The magenta trend is based on Jan.1880-Jan.2024 data and warns that the Seafloor Methane Tipping Point may be crossed in 2025. The red trend is based on Jan.2010-Jan.2024 data and better reflects variables such as El Niño, and it warns that the Seafloor Methane Tipping Point may be crossed in 2024. 


The above image, adapted from tropicaltidbits.com, shows a forecast for November 2024 of the 2-meter temperature anomaly in degrees Celsius, based on 1984-2009 model climatology. The anomalies are forecast to be very high for the Arctic Ocean.

Many additional feedbacks are active, such as changes to the Jet Stream and slowing down of AMOC, and they could speed up the crossing of such tipping points, as also discussed at the feedbacks page. The danger is that a cascade of events will unfold like a domino effect, leading to extinction of most species, including humans, as the image below warns. 

[ from earlier post - click on images to enlarge ]

Greenhouse gases rising

Meanwhile, concentrations of greenhouse gases keeps rising, as illustrated by the image below. 

The average daily carbon dioxide (CO₂) at Mauna Loa, Hawaii, was 426.21 ppm (parts per million) on February 4, 2024. The weekly average was 425.83 ppm. 

Critical is the rate of change, in particular the rapid rise in temperatures and greenhouse gas concentrations. To find higher CO₂ concentrations, one has to go back millions of years. 


A recent study concludes that: 
- A doubling of CO₂ is predicted to warm the planet a whopping 5°C to 8°C.
- The last time atmospheric CO₂ consistently reached today’s human-driven levels of 420 ppm was 14 million years ago.
- The hottest period was about 50 million years ago, when temperatures were as much as 12°C higher than today.

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• Blue Ocean Event
https://arctic-news.blogspot.com/p/blue-ocean-event.html

• Climate Reanalyzer - Daily Sea Surface Temperature, World (60°S-60°N)
https://climatereanalyzer.org/clim/sst_daily

• Pidwirny, M. "Earth-Sun Relationships and Insolation". Fundamentals of Physical Geography, 2nd Edition (2006)
http://www.physicalgeography.net/fundamentals/6i.html

• NOAA - ENSO: Recent Evolution, Current Status and Predictions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf 

• NSIDC - Arctic sea ice extent
https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph

• Danish Meteorological Institute - Arctic sea ice volume and thickness
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• University of Bremen - Arctic sea ice

• Scripps Institution of Oceanography at UC San Diego.

• Toward a Cenozoic history of atmospheric CO₂ - by The Cenozoic CO₂ Proxy Integration Project (CenCO₂PIP) Consortium