Showing posts with label rise. Show all posts
Showing posts with label rise. Show all posts

Monday, May 13, 2024

Temperature rise may soon accelerate even more


The April 2024 temperature was 1.32°C higher than 1951-1980, as illustrated by the above image, created with NASA content. Local anomalies are as high as 6.2°C.


The April 2024 temperature was 1.62°C higher than 1900-1930, as illustrated by the above image, created with NASA content. The red line highlights acceleration of the temperature rise (Lowess Smoothing). 

The image below, created with NOAA content, uses a LOESS filter (green line) to highlight the recent acceleration in the temperature rise of the ocean. In this case, the temperature anomaly is calculated versus a 1901-2000 base. 

[ click on images to enlarge ]

The temperature anomaly is even higher when calculated from a pre-industrial base. The image below, created with NASA content, shows that the February 2024 temperature was 1.76°C above 1885-1915, and potentially 2.75°C above pre-industrial (bright yellow inset right). 

[ from earlier post ]

The image below, created with NASA content, shows Land+Ocean monthly mean global temperature anomalies versus a 1900-1923 custom base, further adjusted by 0.99°C to reflect ocean air temperatures, higher polar anomalies and a pre-industrial base. 

[ from earlier post ]
The above image shows a magenta trend that points at the temperature crossing 3°C above pre-industrial later this year (2024). What could be behind such a steep rise? 

Have Feedbacks taken over? 

In April 2024, El Niño conditions were still dominant. Sea surface temperatures have been extremely high recently. The correlation between El Niño and temperature anomalies (from 1901-2000) is illustrated by the image below, created with NOAA content.

[ click on images to enlarge ]

As illustrated by the image below, created with NOAA content, El Niño conditions are no longer dominant. Instead, neutral conditions now prevail and La Niña conditions may develop as early as June-August 2024 (49% chance) or one month later, i.e. July-September (69% chance). 


The extremely high recent temperatures and the trends depicted in the images further above raise the question as to what the underlying driver is, given that we're no longer in an El Niño. Indeed, the question is whether feedbacks have taken over as the main driver causing the temperature rise to further accelerate. 

As mentioned above, the February 2024 temperature could be as much as 2.75°C higher than pre-industrial. The extinction page points out that a 2.75°C rise corresponds with almost ⅕ more water vapor in the atmosphere. This increase in water vapor in the atmosphere is a self-reinforcing feedback loop, since water vapor is a powerful greenhouse gas, further accelerating the temperature rise.

There is no single feedback that could cause the recent steep rise of temperatures and its acceleration, instead there are numerous non-linear, self-amplifying feedback loops that can all contribute, interact and start to kick in with greater ferocity, amplifying and further accelerating the rise. 

Such feedbacks do include more water vapor, as said, as well as stronger wind, waves and storms, more ocean stratification, faster loss of sea ice, faster loss of reflectivity of clouds and more freshwater accumulating at the surface of oceans, due to stronger ice melting, due to heavier runoff from land and rivers and due to changes in wind patterns and ocean currents and circulation.

Furthermore, developments such as rising emissions from industry, transport, land use, forest fires and waste fires, ocean acidification and reductions in sulfur emissions over the past few years all contribute to further acceleration of the temperature rise. 

Two tipping points threaten to get crossed

The danger is huge and the risks are absolutely unacceptable. Current global temperature anomalies are extremely high, as illustrated by the image below, created with a screenshot from Climate Reanalyzer, showing anomalies from 1991-2000. 


The temperature rise is hitting the Arctic harder than elsewhere, as illustrated by the images created with NASA content below and at the top. 


Contributing to these high temperatures in the Arctic are high temperatures of the North Atlantic Ocean, which are now rising rapidly, in line with seasonal changes, as illustrated by the image below, created with Climate Reanalyzer content. 


The above image shows that the North Atlantic sea surface temperature was 21.5°C on May 14, 2024. High North Atlantic sea surface temperatures spell bad news for the Arctic, as much ocean heat gets pushed toward the Arctic from the North Atlantic. North Atlantic sea surface temperatures are now getting pushed up strongly from their annual minimum, in line with seasonal changes. Ominously, a peak of 25.4°C was reached in August 2023, i.e. almost 4°C higher than the current temperature. The question is how high the North Atlantic temperature will reach this year. 

One tipping point that threatens to get crossed is loss of Arctic sea ice. Loss of Arctic sea ice comes with albedo change, which constitutes a huge self-reinforcing feedback loop, i.e. the more sea ice disappears, the more sunlight gets absorbed by the Arctic Ocean, further accelerating sea ice melting, while less sunlight gets reflected back into space.

[ Albedo change, from the Albedo page ]

Next to the albedo loss, there is loss of the latent heat buffer constituted by the sea ice. Latent heat is energy associated with a phase change, in this case the energy consumed as solid ice turns into liquid water (i.e. melts). During a phase change, the temperature remains constant. Sea ice acts as a buffer that absorbs heat, while keeping the temperature at about zero degrees Celsius. As long as there is sea ice in the water, this sea ice will keep absorbing heat, so the temperature doesn't rise at the sea surface.

As long as air temperatures over the Arctic are below freezing, sea ice can persist at the surface, maintaining sea ice extent, which may give the false impression that sea ice was healthy, whereas in fact sea ice has steadily been declining in thickness, as illustrated by the image below, created with Danish Meteorological Institute content, that shows that Arctic sea ice recently reached its lowest annual maximum on record, as also discussed in earlier posts such as this one.  


The amount of energy absorbed by melting ice is as much as it takes to heat up an equivalent mass of water from zero to 80°C. Loss of the latent heat buffer therefore constitutes a tipping point, i.e. once crossed, the Arctic Ocean will heat up at an accelerating pace. 


The above map, created with Danish Meteorological Institute content, shows that much of the thicker sea ice is located away from the North Pole, such as off the east coast of Greenland. This sea ice is likely to melt away quickly as more sunlight starts reaching the Northern Hemisphere and temperatures rise in line with seasonal changes.

Seafloor methane constitutes a second tipping point. When methane escapes from hydrates that get destabilized by rising temperatures, the methane will expand to 160 times its previous volume and enter the atmosphere with force. Without the buffer constituted by thicker sea ice, an influx of ocean heat could cause large-scale destabilization of hydrates contained in sediments at the seafloor of the Arctic Ocean, resulting in eruptions of huge amounts of methane.

[ from earlier post ]
[ image from the Extinction page ]
On the above image, estimates for these two tipping points are added to Northern Hemisphere Ocean Temperature anomalies vs 1901-2000, created with NOAA data. Furthermore, two trends are added. The magenta trend is based on January 1880-January 2024 data and warns that the Seafloor Methane Tipping Point may be crossed in 2025. The red trend, which is based on January 2010-January 2024 data and better reflects variables such as El Niño, warns that the Seafloor Methane Tipping Point may be crossed in 2024.

Crossing of the latent heat tipping point and the seafloor methane tipping point results in ever more heat reaching and accumulating in the Arctic ocean, destabilizing methane hydrates contained in sediments at the seafloor of the Arctic Ocean, as discussed in many earlier posts such as this one.

Self-amplifying feedbacks and developments as discussed above, as well as crossing of these two tipping points, could all contribute to cause a temperature rise of over 10°C, in the process causing the clouds tipping point to get crossed that can push up the temperature rise by a further 8°C.

Altogether, the temperature rise may exceed 18°C from pre-industrial by as early as 2026, as illustrated by the image on the right, from the extinction page.

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at the Climate Emergency group.



Links

• NASA - datasets and images
https://data.giss.nasa.gov

• Climate Reanalyzer
https://climatereanalyzer.org
https://pulse.climate.copernicus.eu

• NOAA - National Centers for Environment Information
https://www.ncei.noaa.gov

• NOAA - Climate Prediction Center / National Centers for Environmental Prediction
https://www.cpc.ncep.noaa.gov

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Moistening Atmosphere

• Jet Stream
https://arctic-news.blogspot.com/p/jet-stream.html

• Danish Meteorological Institute - Arctic sea ice thickness and volume
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• Arctic Ocean Feedbacks
https://arctic-news.blogspot.com/2017/01/arctic-ocean-feedbacks.html

• Arctic sea ice set for steep decline
https://arctic-news.blogspot.com/2024/03/arctic-sea-ice-set-for-steep-decline.html

• Did the climate experience a Regime Change in 2023?

• Arctic sea ice under threat

• Blue Ocean Event 2024?

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html


Tracking toward mass extinction

 by Andrew Glikson

Where “Two plus two equals five if the party says so” (George Orwell)
and when drilling methane wells reduces global warming


Having turned a blind eye to climate science, ignoring the evidence that extreme atmospheric carbon dioxide (CO₂), methane (CH₄) rise and ocean acidification have led to mass extinctions of species through time, humanity allows an exponential growth of carbon emissions to track toward a global suicide marked by false pretexts and betrayal by the powers that be. The evidence suggests unabated global warming will lead to 3.4 million Deaths Per Year by Century End, fatal consequences calling for a preemptive Nuremberg-like trial exposing the crimes leading to the looming climate suicide.

Note the future estimates of CO₂ levels.
[ Figure 1. Historic CO₂by Owen Mulhern, image from Forster et al. (2017) ]

Note the sharp current and near-future temperature rise.

[ Figure 2. by Glen Fergus, from: Wikipedia - Temperature of Planet Earth ]

The rise in CO₂ in the atmosphere and oceans and the rise in ocean acidity (decline in pH).
[ Figure 3. As human activities have increased CO2 levels in our atmosphere (red line),
about a third of that CO2 has been absorbed by the ocean (green line), and
ocean pH has decreased (blue line). Adapted from NOAA by UC Museum of Paleontology. ]

According to the IPCC, as stated by the late Prof Will Steffen, Australia’s foremost climate scientist, if the exponential rise in greenhouse gas emissions continues we will already have crossed the upper limit that gives us a two-thirds chance of limiting warming to <2.0°C. Other scientists estimate that we have already missed the boat.

During the 200-plus years since the onset of the industrial revolution, the burning of fossil fuels, changing land use and deforestation increased the concentration of atmospheric CO₂. As the ocean absorbs about 30% of the CO₂ its surface acidity increased by -0.1 pH units on a logarithmic scale, resulting in rising concentration of hydrogen ions, a process with far reaching implications for the survival of marine organisms, altering ecosystems.

Ocean acidification affects marine life by dissolving shells and skeletons made from calcium carbonate. Organisms that produce calcium carbonate structures, like corals, sea urchins, sea snails and oysters, need to spend extra energy repairing damaged shells or thickening them to survive.

The onset of the Sixth mass extinction of species.

[ Figure 4. Cumulative vertebrate species recorded as extinct or extinct in the wild by the IUCN (2012). Dashed black line represents background rate. This is the ‘highly conservative estimate’. Source: Ceballos et al. (2015). ]

There have been five Mass Extinction events in the history of Earth's biodiversity, all caused by dramatic natural phenomena. The current rate of extinction is 10 to 100 times higher than in any of the previous mass extinctions in the history of Earth. Incorporating estimates of the true number of invertebrate extinctions leads to the conclusion that the rate vastly exceeds the background rate and that we may indeed be witnessing the start of the Sixth Mass Extinction Island species have suffered far greater rates than continental ones.

As systematic biologists, we encourage the nurturing of the innate human appreciation of biodiversity, but we reaffirm the message that the biodiversity that makes our world so fascinating, beautiful and functional is vanishing unnoticed at an unprecedented rate. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way.

While multitudes of humanity are trying to escape climate disasters, such as Africa, or are engaged in fatal conflicts and geocidal wars, or are perched in front of electronic screens flaunting obscene hubris, cheap entertainment and commercial and political propaganda.

It is far from clear who, apart from the children, would be able to save life on Earth?



A/Prof. Andrew Y Glikson
Earth and climate scientist

Andrew Glikson
Books:

The Asteroid Impact Connection of Planetary Evolution
https://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
https://www.springer.com/gp/book/9783319079073
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
https://www.springer.com/gp/book/9783319572369
The Event Horizon: Homo Prometheus and the Climate Catastrophe
https://www.springer.com/gp/book/9783030547332
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
https://www.springer.com/gp/book/9783319225111
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
https://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
https://www.springer.com/us/book/9783319745442
The Fatal Species: From Warlike Primates to Planetary Mass Extinction
https://www.springer.com/gp/book/9783030754679
The Trials of Gaia. Milestones in the evolution of Earth with reference to the Antropocene
https://www.amazon.com.au/Trials-Gaia-Milestones-Evolution-Anthropocene/dp/3031237080




Friday, May 3, 2024

Is CMIP6 SSP585 the worst-case scenario?

The image below, adapted from Climate Reanalyzer, shows the temperature in the year 2100, in a CMIP6 SSP585 scenario. The image shows how much the temperature will have risen in 2100, at 2 meters above the surface and compared to the period 1979-2000. 


The image below shows a progressive temperature rise reaching 4.589°C in 2100 compared to the same period, i.e. 1979-2000 and in a CMIP6 SSP585 scenario.


The 1979-2000 period is relatively recent. The temperature has been rising for longer than that. The image below shows a progressive temperature rise reaching 4.91°C by 2100 in a CMIP6 SSP585 scenario when instead using a 1901-2000 period as a base.

The 1901-2000 period is also relatively recent, much later than pre-industrial. When using a pre-industrial base, the temperature rise will be well over 5°C.

As illustrated by the top image, the temperature rise over land will be much higher than over oceans, which makes the situation even more dire, given that most people live on land and could face a rise of  8°C by 2100 in a CMIP6 SSP585 scenario.

In a CMIP6 SSP585 scenario, temperatures are projected to keep rising strongly beyond 2100, as illustrated by the image below, from a 2016 paper by Brian O'Neill et al.


In the study by Brian O'Neill et al., CO₂ emissions keep rising until 2100, to then fall gradually to current levels, while the CO₂ concentration in the atmosphere keep rising, to remain at levels beyond 2000 ppm and result in a temperature rise of 8°C by 2300 in a CMIP6 SSP585 scenario.

Is CMIP6 SSP585 the worst-case scenario?

To check whether CMIP6 SSP585 is indeed the worst-case scenario, one can look at how fast CO₂ is rising. According to the IEA, global energy-related CO₂ emissions grew in 2023, reaching a new record high of 37.4 Gt (or 10.098 GtC). The image below, from a recent post, confirms the recent acceleration in CO₂ concentrations, while showing the potential for CO₂ concentration to cross 1200 ppm before the year 2060.


In other words, CO₂ may well be rising even faster than anticipated in a CMIP6 SSP585 scenario, while this scenario doesn't take into account the potential for CO₂e concentrations to cross 1200 ppm much earlier than 2100 (inset), e.g. before 2060 as illustrated by the red trend in the main image. Furthermore, CMIP6 SSP585 doesn't take into account that, in addition to the temperature rise resulting from high greenhouse gas concentrations, crossing the clouds tipping point at 1200 ppm in itself would push up temperatures by a further 8°C.

Indeed, the clouds tipping point could be crossed even earlier when also taking into account methane, nitrous oxide and further greenhouse gases, while there are additional developments such as organic carbon and inorganic carbon release from soils that could further raise both CO₂ concentrations and temperatures. The Extinction page and posts such as this one and this one warn about the potential for a temperature rise of well over 18°C unfolding as early as 2026. 
In conclusion, the temperature looks set to be rising higher and faster at accelerating rate, dwarfing anything seen in previous extinction events, as illustrated by the image below, from an earlier post.


"Now I am become Death, the destroyer of worlds."




The above image is a screenshot from the video (further above) in which physicist J. Robert Oppenheimer reflects on the first test of the atomic bomb. His haunting words mark the moment when science met conscience.

Similarly, climate change is a destroyer of worlds with unfathomable consequences, yet politicians refuse to heed the warnings, in an unprecedented breach of moral values, neglect of the precautionary principle, betrayal of trust and violation of the duty of care.

As a result, the IPCC persists with downplaying the potential for dangerous developments in efforts to hide the need for the most effective climate action. The IPCC keeps pointing at less effective policies such as support for BECCS and biofuel, while continuing to make it look as if there was a carbon budget to divide among polluters, as if polluters could continue to pollute for decades to come, as discussed in earlier posts such as this one.

Meanwhile, a 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• Climate Reanalyzer
https://climatereanalyzer.org

• The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 - by Brian O'Neill et al. (2016)

• International Energy Agency (IEA) - CO2 Emissions in 2023 report
https://www.iea.org/reports/co2-emissions-in-2023

• September 2023, highest anomaly on record?
https://arctic-news.blogspot.com/2023/09/september-2023-highest-anomaly-on-record.html

• CO2 keeps accelerating
https://arctic-news.blogspot.com/2024/04/co2-keeps-accelerating.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Clouds Feedback and the Clouds Tipping Point
https://arctic-news.blogspot.com/p/clouds-feedback.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Amplifying feedback loop between drought, soil desiccation cracking, and greenhouse gas emissions - by Farshid Vahedifard et al. 






Saturday, April 27, 2024

CO2 keeps accelerating

The Scripps Institution of Oceanography, UC San Diego, reported a daily average carbon dioxide (CO₂) at Mauna Loa, Hawaii, of 428.63 parts per million (ppm) on April 26, 2024, as illustrated by the image below. 

This is the highest daily average on record at Mauna Loa, which is the more remarkable since the annual CO₂ maximum is typically reached in May, so even higher values are likely to be reached over the next few weeks. 

The image below, adapted from NOAA, shows that the weekly mean CO₂ at Mauna Loa was 427.94 ppm for the week beginning on April 21, 2024, i.e. 3.98 ppm higher than the 423.96 ppm for the week 1 year earlier.

The image below, adapted from NOAA, shows that the daily mean CO₂ at Mauna Loa on April 26, 2024, was 428.59 ppm, a difference of 4.7 ppm from April 26, 2023.

 

The image below, adapted from NOAA, shows that the annual CO₂ growth at Mauna Loa in 2023 was 3.36 ppm, the highest annual growth on record.

The image below shows the daily average carbon dioxide recorded by NOAA over the past few years at Mauna Loa, Hawaii. 

Clouds Tipping Point

The image below illustrates that a polynomial trend (red) follows the recent acceleration in CO₂ concentration in the atmosphere more than a linear trend (blue). Data used are NOAA Mauna Loa weekly average CO₂ data through the week starting on April 21, 2024 (data downloaded April 28, 2024). 


The image below is the same as the image above, except that the canvas is zoomed out to show all data on record with trends extended to 2060 (X-axis) and CO₂ concentration going from 300 ppm to 1200 ppm (Y-axis). 


The red polynomial trend also illustrates how rising CO₂ can cause the clouds tipping point at 1200 ppm to be crossed well before 2060, i.e. earlier than anticipated in IPCC models (inset).

Moreover, the clouds tipping point could be crossed much earlier than 2060 when also taking into account methane. Monthly methane is approaching 2000 parts per billion (ppb) at Mauna Loa, Hawaii, as illustrated by the image below.


A methane concentration of 2000 ppb corresponds, at a Global Warming Potential (GWP) of 200, with a carbon dioxide equivalent (CO₂e) of 400 ppm. Together with the above daily average CO₂ concentration of 428.63 ppm this adds up to a joint CO₂e of 828.63 ppm, i.e. only 371.37 ppm away from the clouds tipping point (at 1200 ppm CO₂e) that on its own could raise the global temperature by 8°C.

This 371.37 ppm CO₂e could be added almost immediately by a burst of seafloor methane less than the size of the methane that is currently in the atmosphere (about 5 Gt). There is plenty of potential for such an abrupt release, given the rising ocean heat and the vast amounts of methane present in vulnerable sediments at the seafloor of the Arctic Ocean, as discussed in earlier posts such as this one.

Already now, local peaks can at times reach very high levels. The image below shows that the NOAA-20 satellite recorded a peak level of 2432 ppb at 399.1 mb on April 25, 2024, am. 


The MetOp-B satellite (also known as MetOp-1) recorded a peak methane level of 3644 ppb and a mean level of 1944 ppb at 367 mb on November 21, 2021, pm, as illustrated by the image below. 
[ from earlier post ]
[ from earlier post ]
Catastrophic crack propagation is what makes a balloon pop. Could low-lying clouds similarly break up and vanish abruptly? Could peak greenhouse gas concentrations in one spot break up droplets into water vapor, thus raising CO₂e and propagating break-up of more droplets, etc., to shatter entire clouds?

Could a combination of high CO₂ levels and high peak levels of methane suffice to cause the clouds tipping point to be crossed?

Moreover, nitrous oxide is also rising and there are additional elements that could further speed up the rise in CO₂e, as discussed at the Extinction page and this earlier post that warn about the potential for a temperature rise of well over 18°C to unfold as early as 2026.

A 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


Environmental crimes

The accelerating growth in carbon dioxide indicates that politicians have failed and are failing to take adequate action. 

Current laws punish people for the most trivial things, while leaving the largest crime one can imagine unpunished: planetary omnicide!

[ from earlier post ]

The image below is from the post Planetwide Ecocide - The Crime Against Life on Earth, by Andrew Glikson


If we accept that crimes against humanity include climate crimes, then politicians who inadequately act on the unfolding climate catastrophe are committing crimes against humanity and they should be brought before the International Criminal Court in The Hague, the Netherlands.

[ image from earlier post ]

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• NOAA - Carbon Cycle Gases - Mauna Loa, Hawaii, United States
https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts

• Scripps Institution of Oceanography
https://keelingcurve.ucsd.edu

• NOAA - Weekly average CO2 at Mauna Loa 
https://gml.noaa.gov/ccgg/trends/weekly.html

• NOAA - annual mean carbon dioxide growth rates for Mauna Loa
https://gml.noaa.gov/ccgg/trends/gr.html

• NOAA - greenhouse gases at Mauna Loa 

• How long do we have?
https://arctic-news.blogspot.com/2019/04/how-long-do-we-have.html


• Blue Ocean Event 2024?

• Potential temperature trends

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• CO2 rise is accelerating


Friday, April 12, 2024

North Atlantic heating up

Sea surface temperature at record high

The image below, created with Climate Reanalyzer screenshots, shows that the sea surface temperature (SST 60°S - 60°N mean) was 21.2°C on April 24, 2024, reaching yet another record high.

These record high sea surface temperatures are reached as long-term sea surface temperatures are falling and as El Niño is predicted to weaken, which is fueling fears that feedbacks are kicking in with accelerating ferocity. 

The image below, adapted from NOAA, shows global ocean temperature anomalies from 1901-2000, with the green line (LOcally Estimated Scatterplot Smoothing) giving a warning that higher temperature anomalies could be coming up. 

The image below, adapted from Copernicus, shows March 2024 sea surface temperature anomalies from 1991-2020. High anomalies show up, especially around the Equator which can be expected given that the amount of sunlight there is highest at this time of year. 


Carbon dioxide at Mauna Loa reaches new record high

The daily average carbon dioxide at Mauna Loa, Hawaii, was 428.42 ppm on April 24, 2024. To find carbon dioxide levels this high, one needs to go back millions of years.  


The above image shows hourly (red) and daily (yellow) carbon dioxide averages at Mauna Loa for the last 31 days. 


This carbon dioxide level of 428.42 ppm reached on April 24, 2024, is 4.45 ppm higher than the level on April 24, 2023, as the above image shows.

North Atlantic heating up

The North Atlantic Ocean is now heating up rapidly, as more sunlight is starting to reach the Northern Hemisphere. The image below, adapted from Climate Reanalyzer, shows sea surface temperatures up to April 23, 2024. The image shows that 2024 temperatures have been significantly higher than 2023 temperatures for the same dates. The annual maximum temperature in 2023 was reached on August 31. Temperatures can be expected to rise dramatically over the next few months, in line with the change in seasons. 

Much will depend on the strength of the current El Niño over the next few months and El Niño is predicted to weaken, but as said there are fears that feedbacks are kicking in with accelerating ferocity. The image below, adapted from NOAA, shows monthly temperature anomalies versus 1901-2000 through March 2024, colored by El Niño/La Niña conditions. 


NOAA warns that there is a bit of a delay in the effects of any given ENSO phase. So, the first part of this year will still be influenced by El Niño, which is in part why NOAA predicts a 55% chance that 2024 will be hotter than 2023.

Further factors (other than El Niño) may continue to accelerate the temperature rise, as discussed in earlier posts such as this one. One danger is that, due to strong wind along the path of the Gulf Stream, huge amounts of ocean heat will abruptly get pushed into the Arctic Ocean, with the influx of ocean heat causing destabilization of hydrates contained in sediments at the seafloor of the Arctic Ocean, resulting in eruptions of huge amounts of methane, as discussed in earlier posts such as this one.

Arctic sea ice getting very thin

The image below indicates that Arctic sea ice volume has recently been the lowest on record for the time of year.

Given that Arctic sea ice currently is still relatively extensive, this low volume indicates that sea ice is indeed very thin, which must be caused by ocean heat melting sea ice from below, since little or no sunshine is yet reaching the Arctic at the moment and air temperatures are still far below freezing point, so where ocean heat may be melting sea ice away from below, a thin layer of ice will quickly be reestablished at the surface.

This situation looks set to dramatically change over the next few months, as air temperatures will rise and as more ocean heat will reach the Arctic Ocean. Moreover, as illustrated by the map below, much of the thicker sea ice is located off the east coast of Greenland. This sea ice and the purple-colored sea ice can be expected to melt away quickly with the upcoming rise in temperatures over the next few months.


The image below warns that sea ice in a large area from the Laptev Sea down to the North Pole may be very thin. 

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.


Links

• Climate Reanalyzer
https://climatereanalyzer.org

• NOAA - Ocean temperature anomalies
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/ocean/1/0/2015-2024?filter=true&filterType=loess

• Copernicus sea surface temperature anomalies
https://pulse.climate.copernicus.eu

• NOAA - Monthly Temperature Anomalies Versus El Niño
https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202403/supplemental/page-4

• NOAA - ENSO update 
https://www.facebook.com/NOAAClimateGov/posts/821505663344434
also discussed at facebook at: https://www.facebook.com/groups/arcticnews/posts/10161353804294679

• Did the climate experience a Regime Change in 2023?
https://arctic-news.blogspot.com/2024/04/did-the-climate-experience-a-regime-change-in-2023.html

• Atlantic ocean heat threatens to unleash methane eruptions
https://arctic-news.blogspot.com/2024/03/atlantic-ocean-heat-threatens-to-unleash-methane-eruptions.html

• University of Bremen - Arctic sea ice
https://seaice.uni-bremen.de/start

• Danish Meteorological Institute - Arctic sea ice thickness and volume
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html