Showing posts with label Natalia Shakhova. Show all posts
Showing posts with label Natalia Shakhova. Show all posts

Tuesday, October 14, 2014

Royal Society snubs important Arctic scientists and their research

by Dorsi Diaz

Nick Breeze interview with East Siberian Arctic Shelf researcher (ESAS) Dr. Natalia Shakhova on why the important news about methane news is not reaching mainstream news. Powerful interests seem to be in the way of Arctic methane education.

A few days ago an important Royal Society meeting took place that presented important research on the current state of the Arctic. Called ‘Arctic sea ice reduction: the evidence, models, and global impacts’, the event was held in London, England. It was advertised as a “Scientific discussion meeting organised by Dr Daniel Feltham, Dr Sheldon Bacon, Dr Mark Brandon and Professor (Emeritus) Julian Hunt FRS.”

Powerful interests seem to be standing in the way of
important research on 
methane and a dwindling Arctic.
Nick Breeze, Dorsi Diaz
The presenters and attendees there included a list of over 200 important climate scientists from different parts of the world. One could assume from the list of workshops that this conference was being held to talk about and discuss the critical loss of ice we are seeing in the Arctic, and that the purpose of the meeting would be to include any and all data relevant to this never-before-seen-in-human-history event.

People following the rapid loss of Arctic ice and all that data could even be forgiven for feelings of excitement and hope that at least someone is ‘working on it’. We could have assumed that communication was one of the goals here, especially since the conference was tweeted widely, even from inside the conference. Following those tweets we could also have assumed that it was intended that people in the conference were to share information that was important not only about climate change but the loss of the Arctic sea ice.

Such a conference sounds like a great idea, doesn't it? We could have a cause for hope and the organizers seemed transparent, even going so far as to tweet plans. But such assumptions and presumptions would have been misplaced. Instead, what happened has turned into what has been called a Royal Society snubbing of scientists: a brouhaha has developed both in scientific circles and the world wide web, and has now raised serious questions. The main issue was that cutting edge scientists Dr Shakhova and Dr Semiletov were not even invited to present or discuss their very recent findings on important Arctic sea ice and methane releases.

Who are they and what did they have to offer to this conference? Perhaps it was an ‘accident’ that they were not invited? Maybe they were just not on the guest list? Or, if they were deliberately not invited, what could be the reason?

As it turns out Dr Shakhova & Dr Semiletov had just returned from a crucial expedition to the Arctic. The Swerus C3 expedition was conveyed aboard the icebreaker Oden. The goal was to gather data about the Arctic, in particular concerning methane hydrates and systems interaction.

Arctic Expedition

Martin Jakobsson, Professor at Stockholm University and chief scientist on Leg 2, says: “SWERUS-C3 is a two-leg Swedish-Russian-US cooperation that will investigate the linkages between climate, the cryosphere, and carbon. Leg one of the expedition departed from Tromsø, Norway, on 5 July and travelled along the Russian Arctic coast to reach Barrow, Alaska, where a change-over of research staff and crew took place on 20 August. On 21 August SWERUS-C3 set off for its return journey back to Tromsø, this time over the Lomonosov Ridge, an underwater mountain range.”

Jakobsson continues: “During the expedition's second leg we studied the warm Atlantic water that flows into the Arctic Ocean and pockmarks at 900-meter depths as well as the enormous tracks on the ocean floor left by previous ice sheets found in the central Arctic Ocean. The material will be able to provide new perspectives on Arctic sea ice development and history as well as stability of gas hydrates along the Arctic continental shelf.”

Findings in the Arctic have not been particularly reassuring; in fact they portend a dire scenario. A press release from University of Stockholm described that they discovered: “Vast methane plumes escaping from the seafloor of the Laptev continental slope. These early glimpses of what may be in store for a warming Arctic Ocean could help scientists project the future releases of the strong greenhouse gas methane from the Arctic Ocean.”

This could all be read as some mere diplomatic or career-based tussle among scientists, or some type of television drama happening at an obscure conference of less-than household names, so why would the average reader be interested in what this has to do with life on earth?

It does have everything to do with every being that inhabits this planet. To put it into context: Arctic events are turning into a planetary emergency and are developing as you read. Key is the full meltdown of Arctic sea ice, akin to our planetary air conditioner going kaput. Please see the startling Arctic Death Spiral photo here to check just how little Arctic ice is left: Arctic Death Spiral 1979-2013 ( Sea Ice Decline / Deglaciation)

Key words: Planetary emergency

A recent article in USA Today entitled Study: Earth in the midst of sixth mass extinction states: “The loss and decline of animals around the world — caused by habitat loss and global climate disruption — mean we're in the midst of a ‘sixth mass extinction’ of life on Earth, according to several studies out Thursday in the journal Science. One study found that although the human population has doubled in the past 35 years, the number of invertebrate animals – such as beetles, butterflies, spiders and worms – has decreased by 45% during that same period.” Simple Google searches on this topic allow one to uncover a recent addition of many such articles on the same topic.

To be clear, I have the utmost respect for the scientific community and what they have contributed to the advancement of science. I have interviewed some, and helped give voice to the work of scientists, professors, teachers. and experts: I believe in open communication. I believe that when there is a huge problem as in this case of our planetary emergency or ‘6th mass extinction event’, we need all hands on deck, especially the ones out there on the front lines. Dr Shakhova & Dr Semiletov are two of these.

According to computer modelling, our ‘Arctic air conditioner’ was supposed to stay intact and run effectively for many years. Previously the year 2100 was said to have been the year we would really see all ‘he##’ break loose. Now we realize that those models were way off. In fact, our ‘air-conditioner’ is self-destructing more every minute, causing a meandering jet stream which is already reeking climate havoc around the world: typhoons, hurricanes, tornadoes, and other such catastrophic climate events are more commonplace. Indeed, climate change has already become downright nasty. What we were told would not happen until much later is actually taking place right now.

Scientists and governments realize we have a great big problem and have started doing lots and lots of research into our ‘Arctic air conditioner’. Experts were sent to view the problem, Dr Shakhova & Dr Semiletov on board, and told to report back their findings.

The Problem

The air conditioning experts that were sent to check on the problem were not invited to address the Royal Society event to report back, nor to even discuss the air conditioner break down. To be fair, some of them were called upon, including Professor Peter Wadhams (although other significant issues arose to do with Prof Wadhams too). However, the only reporting scientists who were called upon to report on the problem were those same who have been using those same types of conservative computer modeling methods that have traditionally proved to be seriously behind the time actual timeline followed by the Arctic ice.

Clearly it is has been safe to say for years now that those computer modeling methods are more conservative than accurate, and are now in fact far and away off the mark of accuracy. Even a non-scientist can clearly see there is a deeply serious divide between the predictions of conservative models and the dramatic melting events of current days.

The Royal Society plans a ‘communicative’ conference on Arctic sea-ice and leaves out experts recently returned from a life-threatening expedition specifically to review the problem. Meanwhile, others in comfortable office chairs merely crunch data for help guessing at possible problem scenarios. To whom would you listen? Would you trust just one expert or would you call on as many experts as possible to pool resources? Do you feel safe just listening to one side of the story without real-world observations, data, and discussion being included?

created by Zaven Ohannessian with screenshot from interview with Dr. Natalia Shakhova, by Nick Breeze

Imagine for a minute that you are Shakhova and her colleagues. You have been sent to view and report back on the broken air conditioner. You have observed rapid and almost unbelievable changes taking place on your expeditions. It is falling apart and leaking methane. You know that methane is many times more potent and powerful than carbon dioxide and can cause way more damage to the earth if lots of it are coming out. In fact, you have not seen such massive changes before on numerous previous expeditions. You are deeply concerned and really need to let others involved with the ‘Arctic air conditioner’ know what you have seen.

But, when a chance to talk about your data and observations comes up, you are not invited. The very important meeting goes on without you and nothing that you have seen, documented, and observed will become public knowledge. You are stunned by this snub. You want to be able to tell them and therefore the world what is going on. You want to get this information out so that they will let others know what is happening to our ‘Arctic air conditioner’ and the symptoms that its melt are causing.

I can only imagine how that must have felt, sitting on this newest and very important data and not being able to share. Politely though, Dr Shakhova writes a letter about her exclusion, and asks to be able to present her data and observations. She sends a letter to Sir Paul Nurse at the Royal Academy (via climate communication journalist Nick Breeze):

October 4th, 2014
By mail and email

Dear Sir Paul Nurse,

We are pleased that the Royal Society recognizes the value of Arctic science and hosted an important scientific meeting last week, organised by Dr D. Feltham, Dr S. Bacon, Dr M. Brandon, and Professor Emeritus J. Hunt (https://royalsociety.org/events/2014/arctic-sea-ice/).

Our colleagues and we have been studying the East Siberian Arctic Shelf (ESAS) for more than 20 years and have detailed observational knowledge of changes occurring in this region, as documented by publications in leading journals such as Science, Nature, and Nature Geosciences. During these years, we performed more than 20 all-seasonal expeditions that allowed us to accumulate a large and comprehensive data set consisting of hydrological, biogeochemical, and geophysical data and providing a quality of coverage that is hard to achieve, even in more accessible areas of the World Ocean.

To date, we are the only scientists to have long-term observational data on methane in the ESAS. Despite peculiarities in regulation that limit access of foreign scientists to the Russian Exclusive Economic Zone, where the ESAS is located, over the years we have welcomed scientists from Sweden, the USA, The Netherlands, the UK, and other countries to work alongside us. A large international expedition performed in 2008 (ISSS-2008) was recognized as the best biogeochemical study of the IPY (2007-2008). The knowledge and experience we accumulated throughout these years of work laid the basis for an extensive Russian-Swedish expedition onboard I/B ODEN (SWERUS-3) that allowed more than 80 scientists from all over the world to collect more data from this unique area. The expedition was successfully concluded just a few days ago.

To our dismay, we were not invited to present our data at the Royal Society meeting. Furthermore, this week we discovered, via a twitter Storify summary (circulated by Dr. Brandon), that Dr. G. Schmidt was instead invited to discuss the methane issue and explicitly attacked our work using the model of another scholar, whose modelling effort is based on theoretical, untested assumptions having nothing to do with observations in the ESAS. While Dr. Schmidt has expertise in climate modelling, he is an expert neither on methane, nor on this region of the Arctic. Both scientists therefore have no observational knowledge on methane and associated processes in this area. Let us recall that your motto “Nullus in verba” was chosen by the founders of the Royal Society to express their resistance to the domination of authority; the principle so expressed requires all claims to be supported by facts that have been established by experiment. In our opinion, not only the words but also the actions of the organizers deliberately betrayed the principles of the Royal Society as expressed by the words “Nullus in verba.”

In addition, we would like to highlight the Anglo-American bias in the speaker list. It is worrisome that Russian scientific knowledge was missing, and therefore marginalized, despite a long history of outstanding Russian contributions to Arctic science. Being Russian scientists, we believe that prejudice against Russian science is currently growing due to political disagreements with the actions of the Russian government. This restricts our access to international scientific journals, which have become exceptionally demanding when it comes to publication of our work compared to the work of others on similar topics. We realize that the results of our work may interfere with the crucial interests of some powerful agencies and institutions; however, we believe that it was not the intent of the Royal Society to allow political considerations to override scientific integrity.

We understand that there can be scientific debate on this crucial topic as it relates to climate. However, it is biased to present only one side of the debate, the side based on theoretical assumptions and modelling. In our opinion, it was unfair to prevent us from presenting our more-than-decadal data, given that more than 200 scientists were invited to participate in debates. Furthermore, we are concerned that the Royal Society proceedings from this scientific meeting will be unbalanced to an unacceptable degree (which is what has happened on social media).

Consequently, we formally request the equal opportunity to present our data before you and other participants of this Royal Society meeting on the Arctic and that you as organizers refrain from producing any official proceedings before we are allowed to speak.

Sincerely,
On behalf of more than 30 scientists,
Natalia Shakhova and Igor Semiletov

Voicing concerns

Among concerned people following this closely is part-time Professor Paul Beckwith, PhD student of abrupt climate change. Beckwith offers his concerns on this latest turn of events at the Royal Society in his newest video: A little chat on methane

Beckwith’s latest statement about his overall assessment of the Arctic situation and where we stand is not particularly comforting either: Our climate system is presently undergoing preliminary stages of abrupt climate change. If allowed to continue, the planetary climate system is quite capable of undergoing an average global temperature increase of 5°C to 6°C over a decade or two. Precedence for changes at such a large rate can be found at numerous times in the paleo-records. From my chair, I conclude that it is vital that we slash greenhouse gas emissions and undergo a crash program of climate engineering to cool the Arctic region and keep the methane in place in the permafrost and ocean sediments.”

Beckwith points at research in the U.S., such as a study published in 2012 by Lawrence Livermore Laboratory researchers who sum up the situation as follows: “The question is not whether but how much and how quickly methane will be released due to warming, and whether it will be enough to trigger a runaway feedback loop.” The study, earlier discussed at the Arctic-news blog, concludes: “In our review of Arctic methane sources, we found that significant gaps in understanding remain of the mechanisms, magnitude, and likelihood of Arctic methane release. No authors stated that catastrophic release of methane—e.g., hundreds of Gt over years to decades—is the expected near-term outcome. But until the mechanisms are better-understood, such a catastrophe cannot be ruled out. The evidence is strong that methane had a role in past warming events, but the particular source and release mechanisms of methane in past warming is not settled. Whereas most authors indicated that a catastrophic release is unlikely, a chronic, climatically significant release of Arctic methane appears plausible. Such a release could undermine or overwhelm gradual emissions reductions made elsewhere, and thus warrants technological intervention.”

Beckwith further points at paper by 21 Russian scientists, including Shakhova and Semiletov, who sum up the situation as follows: “The emission of methane in several areas of the East Siberian Shelf is massive to the extent that growth in the methane concentrations in the atmosphere to values capable of causing a considerable and even catastrophic warming on the Earth is possible.”

In the meantime, we wait with anticipation to see what the U.K. Royal Society's response will be, and if we will be able to hear of Shakhova and Semiletov's latest data and observations on the state of the Arctic. I, for one, would like to know everything about how the ‘Arctic air conditioner’ is really doing; wouldn't you?

Planetary Emergency Update

As I write the text above, a new article is released: “It’s Worse Than We Thought” — New Study Finds That Earth is Warming Far Faster Than Expected. A small excerpt: “Earlier this week, a new study emerged showing that the world was indeed warming far faster than expected. The study, which aimed sensors at the top 2,000 feet of the World Ocean, found that waters had warmed to a far greater extent than our limited models, satellites, and sensors had captured. In particular, the Southern Ocean showed much greater warming than was previously anticipated.”

Many thanks to Julian Warmington, Associate Professor at BUFS, Busan University of Foreign Studies, for editing this news report.

Related

Climate Change: Paul Beckwith discusses the threat of methane
Dr. Malcolm Light interview on climate change: 'Extreme national emergency'
Special presentations on climate change and its effects by Dr. Guy McPherson



Wednesday, August 13, 2014

Horrific Methane Eruptions in East Siberian Sea

A catastrophe of unimaginable propertions is unfolding in the Arctic Ocean. Huge quantities of methane are erupting from the seafloor of the East Siberian Sea and entering the atmosphere over the Arctic Ocean.


As the top image above shows, peak levels as high as 2363 ppb were recorded at an altitude of 19,820 ft (6041 m) on the morning of August 12, 2014. The middle image shows that huge quantities of methane continued to be present over the East Siberian Sea that afternoon, while the bottom image shows that methane levels as high as 2441 ppb were recorded a few days earlier, further indicating that the methane did indeed originate from the seafloor of the East Siberian Sea.

On August 12, 2014, peak methane levels at higher altitudes were even higher than the readings mentioned on above image. Levels as high as 2367 ppb were reached at an altitude of 36,850 ft (11,232 m). Such high levels have become possible as the huge quantities of methane that were released from the seafloor of the Arctic Ocean over the period from October 2013 to March 2014, have meanwhile descended to lower latitudes where they show up at higher altitudes.

Methane eruptions from the Arctic Ocean's seafloor helped push up mean global methane levels to readings as high as 1832 ppb on August 12, 2014.

Ironically, the methane started to erupt just as an international team of scientists from Sweden, Russia and the U.S. (SWERUS-C3), visiting the Arctic Ocean to measure methane, had ended their research.

Örjan Gustafsson describes part of their work: “Using the mid-water sonar, we mapped out an area of several kilometers where bubbles were filling the water column from depths of 200 to 500 m. During the preceding 48 h we have performed station work in two areas on the shallow shelf with depths of 60-70m where we discovered over 100 new methane seep sites.”

Örjan Gustafsson adds that “a tongue of relatively warm Atlantic water, with a core at depths of 200–600 m may have warmed up some in recent years. As this Atlantic water, the last remnants of the Gulf Stream, propagates eastward along the upper slope of the East Siberian margin, our SWERUS-C3 program is hypothesizing that this heating may lead to destabilization of upper portion of the slope methane hydrates.”

Schematics of key components of the Arctic climate-cryosphere-carbon system that are addressed by the SWE-C3 Program. a,b) Sonar images of gas plumes in the water column caused by sea floor venting of methane (a: slope west of Svalbard, Westbrook et al., 2009; b: ESAO, Shakhova et al., 2010, Science). c) Coastal erosion of organic-rich Yedoma permafrost, Muostoh Island, SE Laptev Sea. d) multibeam image showing pockmarks from gas venting off the East Siberian shelf. e) distribution of Yedoma permafrost in NE Siberia. f) Atmospheric venting of CH₄, CO₂. (SWERUS-C3)
Örjan Gustafsson further adds that SWERUS-C3 researchers have on earlier expeditions documented extensive venting of methane from the subsea system to the atmosphere over the East Siberian Arctic Shelf.

In 2010, team members Natalia Shakhova and Igor Semiletov estimated the accumulated methane potential for the Eastern Siberian Arctic Shelf alone to be as follows:
- organic carbon in permafrost of about 500 Gt;
- about 1000 Gt in hydrate deposits; and
- about 700 Gt in free gas beneath the gas hydrate stability zone.

Back in 2008, Shakhova et al. wrote a paper warning that “we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time.”

Last year, a team of researchers including Professor Peter Wadhams calculated that such a 50 Gt release would cause global damage with a price-tag of $60 trillion.

As Prof Wadhams explains in the video below: “We really have no choice except to seriously consider the use of geoengineering.”



Sea surface temperatures as high as 18.8°C are now recorded at locations where warm water from the Pacific Ocean is threatening to invade the Arctic Ocean.

At the same time, huge amounts of very warm water are carried into the Arctic Ocean by the Gulf Stream through the North Atlantic. The image below illustrates how the Gulf Stream brings very warm water to the edge of the sea ice.

Waters close to Svalbard reached temperatures as high as 62°F (16.4°C) on July 29, 2014 (green circle). Note that the image below shows sea surface temperatures only. At greater depths (say about 300 m), the Gulf Stream is pushing even warmer water through the Greenland Sea than temperatures at the sea surface.

Since the passage west of Svalbard is rather shallow, a lot of this very warm water comes to the surface at that spot, resulting in an anomaly of 11.1°C. The high sea surface temperatures west of Svalbard thus show that the Gulf Stream can carry very warm water (warmer than 16°C) at greater depths and is pushing this underneath the sea ice north of Svalbard. Similarly, warm water from greater depth comes to the surface where the Gulf Stream pushes it against the west coast of Novaya Zemlya.


[ click on image to enlarge ]
As Malcolm Light writes in an earlier post: The West Spitzbergen Current dives under the Arctic ice pack west of Svalbard, continuing as the Yermak Branch (YB on map) into the Nansen Basin, while the Norwegian Current runs along the southern continental shelf of the Arctic Ocean, its hottest core zone at 300 metres depth destabilizing the methane hydrates en route to where the Eurasian Basin meets the Laptev Sea, a region of extreme methane hydrate destabilization and methane emissions.

The images below give an impression of the amount of heat transported into the Arctic Ocean.



The image below gives an idea how methane eruptions from the seafloor of the Arctic Ocean could unfold over the coming decades. For more on this image, see this post and this page.


As said, the situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog at climateplan.blogspot.com and as illustrated by the image below.





Thursday, November 14, 2013

Horrific amounts of methane over Laptev Sea


For some time now, very high methane readings have been showing up over the Laptev Sea. Harold Hensel recently posted the image below with the huge areas solidly colored red indicating release of horrific amounts of methane. Harold adds the following comment:

"I am fighting for the lives of my children, grandchildren, and great grandchildren who's lifespan will extend 30 to 40 years from now. I am also fighting for all children of the world, animals, whales, dolphins, flowers and all living things. They are all in peril and we are the ones that may have a chance of doing something about it now. The threat of what is coming must sink in."


[ click on image to enlarge ]
The image below shows methane readings over a one-month period. As the image illustrates, high methane emissions, i.e. at 1850 ppb and higher, are more prevalent on the northern hemisphere, while emissions on the southern hemisphere are mostly under 1850 ppb. The contours of North America are visible, with Greenland to the north. Further north, over the Arctic Ocean, the color red dominates, indicating emissions of 1950 ppb and higher.



In which part of the Arctic Ocean are most emissions recorded? The image below shows recent methane readings of 1950 and higher, this time colored in yellow, for a period of just over one day during November 12 and 13, 2013. The largest area colored solid yellow is over the Laptev Sea, just north of Siberia.

[ click on image to enlarge ]
Below is an image of the same period as above image, but once more showing methane levels in ranges, i.e. readings of 1950 ppb and higher in red, as well as lower readings in orange and yellow. Over the Arctic Ocean, high methane readings dominate the picture, both readings of 1950 ppb and higher, and readings in the range of 1850 ppb to 1950 ppb.

[ click on image to enlarge ]
What makes high methane releases over the Laptev Sea so scary?
Vast amounts of methane are held in sediments under the Arctic Ocean. The Laptev Sea is part of the Eastern Siberian Arctic Shelf (ESAS, the rectangle on the image on the right). Shakhova et al. (2010) estimate the accumulated methane potential for the ESAS alone as follows:
  • organic carbon in permafrost of about 500 Gt
  • about 1000 Gt in hydrate deposits
  • about 700 Gt in free gas beneath the gas hydrate stability zone.
Shakhova et al. in 2008 considered release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time.

By comparison, the total amount of methane currently in the atmosphere is about 5 Gt.



Monday, September 2, 2013

North Hole

Sea Surface Temperature Anomalies

A dust storm approaches Stratford, Texas, in 1935. From: Wikipedia: Dust Bowl
During the 1930s, North America experienced a devastating drought affecting almost two-thirds of the United States as well as parts of Mexico and Canada. The period is referred to as the Dust Bowl, for its numerous dust storms.

Rapid creation of farms and use of gasoline tractors had caused erosion at massive scale.

Extensive deep plowing of the virgin topsoil of the Great Plains in the preceding decade had removed the natural deep-rooted vegetation that previously kept the soil in place and trapped moisture even during periods of drought and high winds.

So, when the drought came, the dust storms emerged. But what caused the drought?

A 2004 study concludes that the drought was caused by anomalous sea surface temperatures (SST) during that decade and that interactions between the atmosphere and the land surface increased its severity (see image above right with SST anomalies).

Sea Surface Temperature Anomalies in the Arctic

As the above chart shows, SST anomalies in the days of the Dust Bowl were not greater than one degree Celsius. It is in this context that the current situation in the Arctic must be seen. This year, SST anomalies of 5 degrees Celsius or more are showing up in virtually all areas in the Arctic Ocean where the sea ice has disappeared; some areas are exposed to sea surface temperature anomalies higher than 8°C (14.4°F), as discussed in the post Arctic Ocean is turning red.

High SST anomalies can change weather patterns in many places, as discussed in an earlier post on changes to the Polar Jet Stream. The world is now stumbling from one extreme weather event into another, and things look set to get worse every year.

Feedbacks in many ways make things even worse in the Arctic, as described in the post Diagram of Doom. A recent paper by Feng et al. notes that river runoff has significantly increased across the Eurasian Arctic in recent decades, resulting in increased export of young surface carbon. In addition, the paper says, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic. An earlier paper already warned about coastal erosion due to the permafrost melt. In conclusion, the Arctic is hit by climate change like no other place on Earth.

North Hole

As the ice thickness map below shows, holes have appeared in the sea ice in places that once were covered by thick multi-year sea ice.


One such hole, for its proximity to the North Pole, has been aptly named the "North Hole". On the sea ice concentration map below, this hole shows up as a blue spot (i.e. zero ice).


The "Methane Catastrophe"

Why do we care? For starters, methane appears to be rising up from these holes in the sea ice, forming a cloud of high methane concentrations over the Arctic Ocean.



Perhaps this is a good occasion to again look at the methane plume over one km in diameter that appeared in the Laptev Sea end September 2011. The image is part of a paper on the unfolding "Methane Catastrophe".


Back in 2008, Shakhova et al., in the study Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? considered release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time.

For more on the methane threat, please read the post methane hydrates or view the FAQ page.

Action

The threat of the "Methane Catastrophe" requires action to be taken urgently, such as discussed at the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• On the Cause of the 1930s Dust Bowl - by Siegfried Schubert
https://science.sciencemag.org/content/303/5665/1855

• Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? - by Natalia Shakhova et al.
http://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf

• The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the “Methane Catastrophe”: some results of integrated studies in 2011 - by V. I. Sergienko et al.
https://link.springer.com/article/10.1134/S1028334X12080144

• Methane hydrates
https://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

• Frequently Asked Questions (FAQ)
https://arcticmethane.blogspot.com/p/faq.html



Monday, July 29, 2013

CO2? Let Me Introduce You To My Little Friend: CH4 [Methane]!

by Nick Breeze

In the UK, if a person smells any gas in a building or outside, they are told to call an emergency number straight away so that an engineer can come and fix the leak and remove the danger. In the Arctic, atmospheric plumes of gas have been detected that are over 150kms across and likely to have disastrous consequences for our civilisation. We simply cannot ignore this problem; it underpins the fabric of all our lives. We must respond.



Last year I attended the EGU conference in Vienna to meet with Dr. Igor Semiletov and Dr. Natalia Shakhova and was extremely grateful to them for giving me time to discuss the issue of changing conditions in the Arctic. Increased temperatures from human caused greenhouse gas emissions are increasing the risk of methane release from thawing subsea permafrost. These two scientists make annual trips to the East Siberian Arctic Shelf (ESAS), in order to gain a better understanding of what is known to be the largest hydrocarbon store in the world. The methane is trapped in the frozen clathrate deposits that has been frozen for millions of years. In this stable condition we tend to consider the methane less of a risk, however, during the course of the last decade, things have started to change.

It is important to realise that methane (CH4) is approximately 20 x more powerful greenhouse gas than carbon dioxide (CO2) over a 100yr timescale. Afterwhich it breaks down into CO2. Obviously with current atmospheric increases in emissions and the effects of warming already being felt, we do not have a 100yrs. In a shorter timescale of 20yrs, methane is estimated to be 100 x more potent as CO2 as a greenhouse gas. Baring in mind that there is currently 5 gigatonnes of methane in the atmosphere and that the East Siberian Arctic Shelf (ESAS) is estimated to have between 100’s and 1000’s of gigatonnes trapped in the permafrost, if there is any destabilisation, supply of methane could rapidly move the world to a much hotter and dangerous state for humans and many other forms of life.

As a species humans add 35 billion tonnes of carbon dioxide to the atmosphere each year in the form of emissions. Over the course of the last 200 years this has caused a global temperature rise of about 0.8 C. Although this seems tiny, we are only just starting to understand how sensitive the Earth is to changes in temperature. Add to this that the Arctic has been warming at around 8 times the speed of the mid latitudes and it’s not hard to see why the Arctic Sea Ice has gone into an accelerated melt.

NASA Image of Melting Arctic Sea Ice
It may seem obvious that if we heat the planet up then we will melt the ice. When joining the dots on the severity of what climate change really means, it is important to grasp “feedbacks”. These are the Earth’s response to changes within the climate system. A general rule of thumb is that “positive feedbacks” generally are bad for us and “negative feedbacks” are not. In the case of the Arctic, it is important to understand that there are multiple feedbacks [watch this comprehensive analysis by David Wasdell, Apollo-Gaia Director for more information] that come into play when the temperature changes. The Arctic sea ice is one that has caught the world’s attention because we are entering a phase where we no longer have a northern polar ice-cap. This is, in turn, setting off other positive feedbacks, one of these being the heating of the Arctic ocean as it absorbs sunlight and starts to thaw the subsea permafrost in the shallow seas of the ESAS. This is effectively removing the seal on a vast store of potent methane greenhouse gases that could take us from a steady increase in temperature to the awful sounding “runaway” global heating.

During the interview with Dr Shakhova, I was chilled when she showed me 2 charts, one with small insignificant plumes of methane from over ten years ago, contrasted with a chart from 2011 where the plumes of escaping gas from the permafrost were over a kilometre wide. Dr Shakhova also stated that in recent years all the conditions were changing making the risk of a game changing release of methane from the ESAS much more likely. Dr Shakhova even pointed out that it was likely “in decades”. Dr Semiletov went further to say “anytime!”.

Below are a few video clips from the interview in April 2012. I am very much looking forward to seeing the new work by Dr’s Semiletov and Shakhova et al that will be released shortly, giving us a far greater understanding, and up to date view, of the state of this all important region in the Arctic.


In the meantime, the methane issue has been the focus of NASA’s ‘Carbon in Arctic Reservoirs Vulnerability Experiment’ (CARVE) who have detected 150 kilometre plumes of atmospheric methane. This raises a few questions that are critical to our future civilisation:
  1. If the Arctic Sea Ice and permafrost are degrading at 0.8C, are the IPPCC agreed “targets” of 2C really safe? 
  2. Have we underestimated Earth’s sensitivity to temperature altogether and sailed blindly over into the wild waters of runaway climate catastrophe?
  3. How much longer can we continue to release carbon emissions into the atmosphere before we lose the gift of choice in the matter and the climate shifts to a hotter state increasing sea-levels significantly, and not favouring large-scale agriculture?
For a longtime the methane issue has remained outside the larger conversation of impacts of global warming, except by reference to far off future risks. There are a handful of scientists such as Professor Peter Wadhams, Head of the Polar Institute at Cambridge University, who, based on submarine observations of the Arctic sea ice’s collapse in volume, has been pointing out that a methane feedback may not be as far away as we think. Professor Wadhams has made these points in the face of angry cries of “Alarmist” from UK politicians with financial interests in the hydrocarbon industry.

The work of scientists including the Russians, Wadhams and NASA’s CARVE team now means we can no longer ignore the risk of methane as part of the Earth’s complex system of feedbacks to temperature change. It also is very likely that at 2C the world will not be the beautifully hospitable place that it has been for humans for so long. It is very likely that we are close to that “tipping point” of no return where global heating goes into a runaway phase and we lose our only life support system. I sincerely hope this isn’t the case but we have to acknowledge the risk if we are to react appropriately.

In order to answer the third question posited above, we have to comprehend the enormity of the task of transitioning away from fossil fuels (coal, oil and gas). To say it cannot be done is to kiss the world, as we know it, goodbye. It can be done but it will take the will of all of us together, starting with citizens around the world, to politicians and those in the hydrocarbon business themselves. Whilst in Vienna in 2012, I also interviewed Dr James Hansen, one of the most outspoken climate scientists alive today and former Head of The Goddard Institute for Space Studies in New York. You can watch a video clip at http://vimeo.com/71179724 on what Hansen proposes as a way to curb emissions and start turning the tide on our collective response to global heating.

So how do we respond? It is clear that we need to make changes at a societal level. Never forget that each and everyone of us is a part of society and, as such, we have influence. The action we need to take is tied in with our attitude to the problems we face. The hydrocarbon industries lobby our governments and institutions to make sure their needs are not ignored. This is for one reason alone: profit. Societal reliance on this form of energy is no longer necessary. We should be transitioning away from hydrocarbon fuels. We can’t because these powerful companies are tucked tight inside the framework of our civilisation. There is no doubt that as such, we are entering a phase of willful self-destruction. The only thing that can stop it is us. A good example of this institutional integration is the Royal Geographic Society where Shell’s logos feature prominently and they even have their own page on the society’s web site aligning themselves with our respected institutions, paying lip service to our future concerns. This is disgusting. We should treat hydrocarbon companies as we did the tobacco industries once it was proven how harmful tobacco is to our health. These companies project the use of oil and gas way into the middle of the century. Don’t believe it. On this course, we will end up clinging to an inhospitable planet, barely recognisable as it is today. Take action.


The first and most effective thing you can do is contact your local elected representative and tell them straight. I sent the following email to my own Member of Parliament, Mary McCleod MP and waiting patiently for a reply. It is critical to remember that they have our future in their hands but we have their vote. Let’s use it!

Dear ____,

As a citizen concerned with the unnecessary proven damage being done to our environment, I am writing with the following conditions that will have to be met if you are to have my vote at the next election:
  1. Remove all links to hydrocarbon companies that currently exist within public institutions
  2. Ban hydrocarbon company advertising
  3. Introduce a fair tax on carbon that will level the playing field for renewable energy sources and force the hydrocarbon industries to clean up their act
  4. Implement a framework for a transition to renewable energy immediately
As you represent me on a local and national level I will be listening with interest to all representations you make to government on my behalf. I am also keen to hear your response and will be sharing it with friends and family.

Thank you for your time.

Yours sincerely,



____________________________

A note on climate fixes such as ‘Climate Engineering’ (aka geoengineering): I have not mentioned proposed climate engineering proposals in this post as we are currently working on an in depth look at several projects that are already in progress. Climate engineering raises many scientific, political and ethical issues and to many people the idea that man can engineer Earth’s climate is a crazy and hubristic fantasy. No matter what we think, it is important that we are all cognisant of the arguments being put forward. We will be interviewing leading commentators and authorities, not just from the climate and engineering backgrounds but also from ethical and philosophical disciplines to help form a view of this controversial subject. The worst case scenario is that we ignore the subject altogether and the decision to engineer climate falls into the hands of a foreign international power willing to gamble the fate of billions, or, a wealthy individual who can afford to take an equal gamble and become what Clive Hamilton has titled his recent book, an ‘Earthmaster’. Groups such as the Arctic Methane Emergency Group have been calling for climate engineering to be deployed immediately to cool the Arctic and prevent the runaway heating that climate scientists most fear. The argument for both sides is compelling and the more we shy away from zero carbon emissions the more climate engineering solutions start to look like a relatively cheap alternative. It is time for us all to be part of this critical discussion.

This post was originally posted at: 
http://envisionation.co.uk/index.php/blogs/72-co2-let-me-introduce-you-to-my-little-friend-ch4-methane

Thursday, November 15, 2012

Arctic methane: Why the sea ice matters



Arctic methane: Why the sea ice matters 
a new film by Envisionation.co.uk
Interviews with:
James Hansen - NASA
Natalia Shakhova - IARC
Peter Wadhams - Cambridge University, UK
David Wasdell - Apollo-Gaia Project



Arctic Methane: Why The Sea Ice Matters

James Hansen: If it begins to allow the Arctic Ocean to warm up and warm the ocean floor, then we'll begin to release methane [from] hydrates, and if we let that happen, that's a potential tipping points that we don't want to pass. There are now observations that methane is beginning to be released by both melting tundra on the land and bubbling up in the Arctic Ocean, indicating some warming of the Arctic Ocean.

Natalia Shakhova: The total amount of methane in the current atmosphere is about 5 Gt. The amount of carbon preserved in the form of methane in the East Siberian Arctic Shelf is ~ from hundreds to thousands Gt. What divides this methane from the atmosphere is a very shallow water column and a weakening permafrost, which is losing its ability to serve as a seal. This area is very seismically and tectonically active and there was some investigation that the tectonic activity is increasing.

Peter Wadhams: At the rate we're going, it will bring us to an ice-free Arctic in about four years time. [The Arctic Ocean] now warms up to about 5 degrees [5°C or 41°F, i.e.] enough to start warming up the seabed. The seabed at the moment is frozen, but it's now starting to melt. That's allowing a lot of methane which is trapped under the permafrost to be released. That's a large boost to global warming, because methane is an extremely powerful climatically-active gas. 

David Wasdell: The warm water from the surface is now being mixed down to those areas that it never reached when the whole area was covered in sea ice. As soon as the area is open water, you have a process of heating that goes right down to those clathrate deposits on the seabed. The more the methane is released into the atmosphere, the faster the heating goes. It's probably the greatest threat we face, as a planet. We're already in a mass extinction event.