Warming is accelerating. For some time, it has been warmer than the 1.5°C guardrail that the Paris Agreement promised should not be crossed. This conclusion follows from above analysis of NASA land+ocean data 1880-October 2017, adjusted by 0.59°C to cater for the rise from preindustrial and with a trend added that also indicates that the global temperature look set to cross the 2°C guardrail soon, with 2021 falling within the margins of the trend line.
[ click on images to enlarge ] |
The trend line shows a strong and ominous direction upward. Nonetheless, the situation could be even more dire than this trend indicates, since some warming elements are not fully incorporated in these data.
As an example, the NASA data look at the temperature at the surface of the oceans, which has increased strongly, as also illustrated by the image on the right.
Much warming has also occurred below the sea surface, while there has been some cooling of the sea surface. Moreover, ocean heat has also increased strongly over the years, as the image below illustrates, and looks set to increase further.
After all, what happens to oceans is important, as 93.4% of global warming currently goes into oceans.
The fact that much warming is taking place below the sea surface could make that it gets overlooked. If much of this warming were to get transferred from the Arctic Ocean to the atmosphere over the next few years, then the temperature rise over the next few years could take an even sharper turn upward.
The threat that warming below the sea surface is overlooked is highlighted by the image below, which shows huge warming of Arctic waters at selected locations near Svalbard.
Above image focuses on temperatures at selected locations near Svalbard (see map below). In 1981-2011, temperatures were gradually falling by more than one degree Celsius over the period of measurement, i.e. from October 1 to November 23 (blue line), a fall that is in line with the change in seasons. Over this period in 2017, temperatures were 13.19°C or 23.77°F higher than in 1981-2011, while the temperature didn't seem to be falling (red line).
How could these waters get a stunning 13.19°C warmer than two decades ago?
Global warming did hit the North Atlantic hard, particularly along the track of the Gulf Stream all the way to the Arctic Ocean. This has translated into stronger winds along the track of the Gulf Stream, which are making that ever larger amounts of warm water are getting pushed from the North Atlantic to the Arctic Ocean.
A temperature rise underneath the sea surface can be overlooked when merely monitoring the average surface temperature of the Arctic Ocean, especially when stronger winds have caused more evaporation, cooling down the water at the surface.
[ 100% relative humidity (left) as jet stream moves over Arctic Ocean (right) ] |
This freshwater lid has also made it easier for sea ice to form at the surface, as ice will form in freshwater as warm as just below 0°C (or 32°F), compared to salty seawater that must cool down to -2°C (or 28.4°F) before freezing. The seawater underneath the sea ice is warm enough to melt the ice from below, but the layer of freshwater at the surface acts as an insulator.
There would have been less sea ice, had it not been for the rain resulting in this freshwater lid. Much of the freshwater lid did turn into sea ice in September 2017, as air temperatures came down below 0°Cs, and this sea ice similarly acted as an insulator, preventing transfer of heat from the Arctic Ocean to the atmosphere. Importantly, while much of the additional freshwater at the surface did turn into sea ice in 2017, this is only a temporary phenomenon, as no ice will form once the surface of the water will stay above 0°C, which looks imminent as temperatures keep rising.
[ Cyclone carrying particulates into the Arctic Ocean ] |
Additionally, more heat is radiated from sea ice into space than from open water (feedback #23).
Stronger cyclones can also bring more particulates into the Arctic Ocean, speeding up the demise of sea ice by darkening it when settling on ice, as illustrated by the image on the right.
In conclusion, while the formation of the freshwater lid at the surface of the Arctic Ocean has been holding back the collapse of the sea ice, the delay of the collapse can only be a temporary one as temperatures keep rising. The Arctic Ocean is warming at accelerating speed and collapse of the sea ice looks imminent.
[ click on image to enlarge ] |
Less sea ice will on the one hand make that more heat can escape from the Arctic Ocean to the atmosphere, but on the other hand the albedo loss and the additional water vapor will at the same time cause the Arctic Ocean to absorb more heat, with the likely net effect being greater warming of the Arctic Ocean.
Another point to consider is latent heat, as discussed in earlier posts. The danger is illustrated by the image below, showing that heat threatens to destabilize methane hydrates at the seafloor of the Arctic Ocean. As the temperature of the Arctic Ocean keeps rising, more heat threatens to reach sediments that have until now remained frozen. Melting of the ice in these sediments then threatens to unleash huge eruptions of seafloor methane that has until now been kept locked up by the permafrost.
The Buffer has gone, feedback #14 on the Feedbacks page |
Levels of CO2, CH4 an N2O have been rising rapidly since 1750, as above image shows. Methane levels have risen 257% since 1750.
Did the rise in methane emissions slow down from 1999 to 2006?
One explanation for the apparent slowdown is that, as temperatures kept rising, water vapor in the atmosphere increased accordingly (7% more water vapor for every 1°C warming), resulting in more hydroxyl that broke down more methane in the atmosphere since 1990. So, while the rise in methane levels appeared to slow down, methane emissions were actually continuing to increase, but as an increasingly large part of methane was decomposed by hydroxyl, this rise in methane was overlooked. In 2007, Arctic sea ice reached a record low, triggering more methane eruptions from the seafloor of the Arctic Ocean. While hydroxyl kept increasing, seafloor methane kept increasing faster, making that methane emissions increasingly started to overwhelm hydroxyl, resulting in a stronger rise in overall methane levels. In 2013, I estimated methane emissions at 771 Tg/y, whereas the IPCC's estimate was 678 Tg/y. The post estimated methane from hydrates and permafrost at 13% of total methane emissions, whereas the IPCC's estimate was a mere 1% of total methane emissions. - Sam Carana, Dec. 2017.
[ click on images to enlarge ] |
Methane levels have been rising strongly since 2000 and this rise looks set to continue, as illustrated by the image on the right.
There is also a danger that, as temperatures keep rising, the course of the ocean current near Svalbard could change, making that more heat will reach the East Siberian Arctic Shelf (ESAS), thus further warming up sediments there, resulting in huge amounts of methane erupting from the seafloor.
Add up the impact of all warming elements and, as an earlier analysis shows, the rise in mean global temperatures from preindustrial could be more than 10°C in a matter of years, as illustrated by the images below.
A 2°C rise in temperature alone is devastating, especially when considering that temperature peaks in history look to have been less high than previously thought, as concluded by a recent study in ocean paleotemperature. Therefore, a 10°C rise may well result in the warmest temperatures experienced on Earth. Moreover, the speed at which this rise could occur leaves little or no time for plants and animals to adapt, in contrast to historical climate swings that typically took many years to eventuate.
The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.
Links
• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html
• 10°C or 18°F warmer by 2021?
https://arctic-news.blogspot.com/2017/04/10c-or-18f-warmer-by-2021.html
• Abrupt Warming - How Much And How Fast?
https://arctic-news.blogspot.com/2017/05/abrupt-warming-how-much-and-how-fast.html
• Accelerating growth in CO₂ levels in the atmosphere
https://arctic-news.blogspot.com/2017/02/accelerating-growth-in-co2-levels-in-the-atmosphere.html
• High methane levels over the Arctic Ocean on January 14, 2014
https://arctic-news.blogspot.com/2014/01/high-methane-levels-over-the-arctic-ocean-on-january-14-2014.html
• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html
• Extinction
https://arctic-news.blogspot.com/p/extinction.html
• Methane Erupting From Arctic Ocean Seafloor
https://arctic-news.blogspot.com/2017/03/methane-erupting-from-arctic-ocean-seafloor.html
• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html
I am constantly aware, unlike others, that the ocean water temperatures need not be much above the freezing point for the hydrates to melt. While the conductivity of seawater and sediments are different, I feel it is important to remember that the temperature of the Earth under the methane hydrates is more than enough to free the trapped methane. The seawater has to keep the sediments colder than freezing as the heat underneath slowly works its way to the ocean bottom.
ReplyDeleteI suspect the Russian teams talk in terms of a "burp" or massive release of the methane over a short period for this reason. Once the heat 'pulse' from below is enough to melt the 'cap', everything below is already melted (by the Earth's heat) and "Thar' she blows". It all comes out at once.
Thanks for reminding me that I should add more images on this.
Delete