Climate Plan

PAGES AT ARCTIC-NEWS BLOG

Saturday, July 30, 2016

Olivine weathering to capture CO2 and counter climate change

Professor Schuiling in front of a huge and very impressive olivine massif in Oman

Olivine weathering to capture CO₂ and counter climate change - by R.D. Schuiling


Abstract

CO₂ is emitted in large quantities as a consequence of our burning of fossil fuels. It has several unpleasant consequences, because it will probably cause climate change, and there are several reports that high levels of CO₂ in offices and schools may impair the quality of thinking of the people that work there. Although higher levels of it in the atmosphere may also have some beneficial effects on vegetation, it should be considered as a possibly dangerous pollutant.

Introduction


Many new technologies are proposed to remove CO₂ from the atmosphere, but strangely enough the only process that has always removed the excess of CO₂ emitted by volcanoes since the origin of the Earth is barely considered. It is the weathering of minerals by which almost all the CO₂ that was emitted during the past by volcanoes was transported as bicarbonate solutions to the oceans where it was sustainably stored as carbonate rocks (limestones and dolomites).
Mg₂(SiO₄)  + 4 CO₂ + 4 H₂O 2 Mg²⁺ + 4 HCO3- + H₄(SiO₄)

These rocks contain about 1 million times more CO than the oceans, the atmosphere and the biosphere combined. It has provided a livable atmosphere, in contrast with Venus, where weathering was impossible due to the lack of liquid water. At present the CO levels in the atmosphere are rising, because the anthropogenic emission of CO is so large that this weathering process cannot keep pace with it. I propose to use a process of enhanced weathering to regain a new balance between input and output. In order to make this cost-effective, my examples will all represent a combination of CO capture with another beneficial effect, by which the total effect is cheaper, and may occasionally even lead to a positive financial result.

Ten cost-effective applications of olivine weathering:
  1. Increasing rice production by spreading olivine grains in paddies
  2. Olivine spreading on acid soils instead of liming
  3. Biogas production with additional methane production
  4. Solution of the sick-building syndrome of schools and offices
  5. The use of the surf as a huge ball-mill
  6. Diatom cultivation for the production of biodiesel
  7. Phytomining of nickel from olivine-rich soils
  8. Olivine hills to produce healthy mineral water
  9. Quenching forest fires with a serpentine slurry
  10. Tackling natural emissions in Milos, Greece

1. Increasing rice production by spreading olivine grains in paddies

Rice, like the other “wet grasses” like bamboo and reed needs silica. This is made available by spreading olivine grains over the paddies. It is very easy to measure the effects, by sampling the irrigation water where it enters the paddy, and sample it again where the water leaves the paddy containing olivine. The difference between the two analyses represents the effect of the weathering of the olivine. Rice production is negatively affected by acid conditions (1), and the weathering of olivine makes conditions more alkaline. As rice cultivation occupies 146 million hectares, spreading these annually with 4 ton of olivine per hectare also represents a sizable capture of CO. The increase of rice production can be measured by spreading for example 1, 3 and 10 ton of olivine over 3 paddies, and compare rice production with the production of a similar paddy without olivine spreading.

2. Olivine spreading on acid soils instead of liming

The approach as sketched above for rice can be extended to other acid agricultural soils as well. Normally acid soils are remediated by liming, but olivine spreading can do the same, and captures CO at the same time, whereas liming has a penalty for its CO emissions on account of the mining, milling and transporting of lime. Tests at the Agricultural University of Wageningen (2) have shown that olivine application increases productivity. The costs of adding lime or olivine will be rather similar, and soil scientists should decide whether a mixture of the two produces a better soil than using only one of the two.

3. Biogas production with additional methane production

Increasing methane production in biogas installations. In the normal operation of biodigesters, the produced gas contains roughly 2/3 methane, 1/3 CO and traces of HS. Before this gas can be added to the national gas lines, the CO content must be drastically reduced by rather expensive operations, and the HS must be removed. Tests with digesters have shown that the addition of fine-grained olivine has 3 important effects. It creates more alkaline conditions, which make that a larger part of the CO is already taken up as bicarbonate in the digestate, and does not have to be removed by expensive technologies. The second effect is that the traces of HS react with the iron content of the olivine and forms solid iron sulfide particles (olivine is a mixed crystal of Mg(SiO) and Fe₂(SiO₄). The third effect was somewhat unexpected. The methane production increases by the following reaction:

6 Fe₂(SiO₄) + CO₂ + 14 H₂O  Fe₃O₄ + CH₄ + 6 H₄(SiO₄)

The methane reaction is catalyzed by the tiny magnetite crystals that form in this reaction. In view of the important role of iron in the olivine, it may be worthwhile to look for olivine deposits with a higher Fe-content than the usual olivine. This application will reduce the costs of the digestion, and increase its production.

4. Solution of the sick-building syndrome of schools and offices

It was recently found by research groups in Berkeley and Harvard (3,4) that the high CO content of the internal atmosphere of these buildings (rising to 1500 to 1600 ppm in the afternoon compared to 400 ppm in the atmosphere outside) impaired the quality of thinking of the inmates. To avoid this, one can open doors and windows, but in temperate climates this causes serious increases in energy costs, and will often cause dust and noise problems. One can prevent this by installing a so-called CATO-reactor (Clean Air Through Olivine). This is a trough-like basin filled with an emulsion of fine olivine grains. Along the bottom a perforated pipe is installed, through which the internal atmosphere of the building is transported under a slight overpressure. The air bubbles pass through the olivine emulsion, and the CO is converted to bicarbonate in solution. This set-up has the additional advantage that it will also trap allergenic particles or pollen, which will make life easier for people who suffer from asthma or hay fever.

5. The use of the surf as a huge ball-mill

The surf as the largest ball-mill on Earth. Milling of olivine (around 2 US$/ton for milling olivine to 100 micron) is a cost that can be avoided if nature provides a zero cost alternative. We have carried out experiments with angular coarse olivine grit in a simulated very modest surf (5). After a few days the grains were rounded and polished grains (Fig. 1). Tiny micron-sized slivers were knocked off by collisions and abrasion. These slivers weathered in a few days.

Fig 1: The surf turns angular coarse olivine grit into rounded and polished grains in a few days
Depositing coarse olivine grit directly on beaches in the surf may well become the cheapest large-scale way to capture CO and restore the pH of the oceans.

6. Diatom cultivation for the production of biodiesel

Diatom cultivation for biodiesel production. Biofuels are produced at fairly large scale from oil palms, sorghum, maize and the like. This production occupies large tracts of land, which are withdrawn from the world food production. They consume large volumes of irrigation water, and use expensive fertilizer. Moreover not seldomly reservations for threatened animals, like the orang outan are used for these plantations. Enough reasons to look for different solutions. Diatoms (silica algae) are rich in organic material from which biodiesel can be produced. They are called silica algae, because their exoskeleton is made of silica. They can multiply fast, provided that they have enough silica. This can be provided by the weathering of olivine. One can think of the following solution for diatom cultivation. Create a lagoon along the beach, by surrounding a piece of the sea in front of this beach by a dam. Construct a connection through this dam, through which water can flow into the lagoon at high tide, and flow out of the lagoon at ebb tide. Cover the beach with half a meter thick layer of olivine grains between the high tide line and the low tide line. This beach will alternatively be wetted and drained, by which the silica-rich water will flow into the lagoon, and feed the diatoms. The dead diatoms must be harvested, dried and transported to the biodiesel plant . The diatom production in the lagoon can be boosted by installing an underwater led lighting, which makes that the photosynthesis of the diatoms can continue through the night.

7. Phytomining of nickel from olivine-rich soils

Phytomining of nickel. Olivine contains more nickel than most rocks, but still much lower than nickel ores. There are a number of plant species that have the strange habit that they can extract nickel very well from the soils on olivine rock and store it in their tissues . When you harvest these plants at the end of the growing season, dry them and burn them, the plant ash often contains around 10% of nickel, more than the richest nickel ore. Mining is an energy-intensive affair and has a high CO emission. Moreover the mining and the metal extraction from the ore cause a lot of pollution. This makes it tempting to see if you can use these nickel hyperaccumulator plants to do the job of mining without large CO emissions (6). Figure 2 shows the flowering Alyssum plants (a well-known nickel hyperaccumulator plant) on the tailings of an asbestos mine in Cyprus.

Fig 2: Yellow blossomed Alyssum nickel hyperaccumulator plants grow on tailings of former asbestos mine on Cyprus
8. Olivine hills to produce healthy mineral water

Olivine hills to produce healthy mineral water. When olivine weathers, it turns the water into a healthy magnesium bicarbonate water. According to the FAO such waters are active against cardiovascular diseases. This makes it interesting to see if we can produce similar mineral waters in places where there is no olivine in the subsoil. This is possible by the use of olivine hills (7). These can be constructed as follows. First make an impermeable layer on the soil in the form of a very flat slightly inclined gutter. Cover this with a hill of olivine grains of several meter thickness. Add soil over this hill, and plant it with shrubs and grasses. Soils are much richer in CO than the atmosphere. This is caused by the decay of dead plant material which produces CO in the soil, as well as the breathing of animals living in this soil. When it rains, the water will first encounter this CO-rich soil atmosphere, equilibrate with it and become aggressive. This CO-rich water will then move into the olivine layer, and react with it, producing a healthy magnesium bicarbonate water. This will trickle through the olivine layer until it meets the impermeable base, where it will slowly trickle to the lowest point of the gutter, where it will be released through a tap, where visitors can collect some of this water and drink it.

9. Quenching forest fires with a serpentine slurry

Quenching forest fires with a serpentine slurry. Forest fires cause the largest emission of CO after the emission by burning fossil fuels (8). Large forest fires lead to a number of deaths. Both from the public health side as from the CO emission side it would be helpful if we found a better way to quench forest fires rapidly. The following seems to be a promising way to achieve this. Serpentine is the hydrated form of olivine, it is similar to clay minerals. It is well-known that baking clays to make bricks consume a lot of energy. This is an unpleasant property, except where it is important to remove as much heat as possible, like in forest fires. We carried out a number of tests to see whether spreading serpentine slurries over fires would be a more effective way to quench fires than just water. This turned out to be very clearly the case, but not for the reason we thought. Test fires were extinguished in a few seconds when serpentine slurries were sprinkled over them, but the removal of excess heat was only a minor factor in the success. When serpentine slurries are spread over burning wood, the serpentine immediately dissociates, and forms a thin amorphous layer on the burning material. Oxygen can no longer come in contact with the burning wood, and inflammable gases from the burning wood can no longer escape. Test fires were quenched in a few seconds. As serpentinites are very common rocks, it should be easy to introduce this way of quenching to combat forest fires. It is hoped that this will be introduced by the fire brigades in many countries that suffer from forest fires, and thus save unnecessary deaths and destruction of properties. The amorphous product of the serpentine after it has reacted in the fire reacts quite fast with the first rains, faster than olivine, and thus compensates part of the CO₂ that was emitted by the fire.

10. Tackling natural emissions in Milos, Greece

CO₂ levels in the atmosphere are rising, because we are burning in a few hundred years the fossil fuels (coal, oil, gas) that have taken hundreds of millions of years to form. This will probably cause a climate change, with disastrous world problems, because the ice in Greenland and Antarctica will melt and cause a serious sealevel rise. It is important, therefore, to capture as much CO₂ as possible and store it in a safe and sustainable manner.

It makes no difference for the climate if we capture anthropogenic CO₂ or natural CO₂ emissions, because all CO₂ molecules are identical. The anthropogenic emissions are much more voluminous, but natural emissions are easier to capture. An excellent example is found on and around the island of Milos, where annually 2.2 million tons of hot CO₂ are emitted from a surface area of about 35 km². The village of Paleochori is the center of this CO₂ emission. Most of the CO₂ emission is by bubbles rising out of the shallow seafloor, but CO₂ is also emitted on land. When you try to dig a hole in the beach with your hands, you have to stop when the hole is elbow-deep, otherwise you burn your hands. The bubbles are so hot, that a local restaurant in Paleochori is even using it for its “volcanic cooking”. They have buried a box in the beach sand, in which they cook a lamb every morning. Delicious to have a juicy lamb for lunch on the terrace of that restaurant, while you look out over the blue Aegean.

It becomes important for the world to capture as much CO₂ as possible. When you apply this to the CO₂ emissions at Milos, one could do the following. First find a place where the most CO₂ bubbles rise from the shallow sea floor. Then make a small artificial island by covering this point with a hill of olivine sand as well as larger olivine pieces. Of course, when bubbles of CO₂ rise in the sea, they will assume the same temperature as the sea water, but if they rise in an olivine hill they will cause the temperature inside that olivine hill to rise, because now the hot bubbles release their heat to the surrounding olivine grains. This situation will lead to a small convection system. The warm water inside the hill will start to rise, and cold seawater will be sucked in the hill from the sides. If one constructs a shallow pit on top of the island, it will fill with warm water.

Would it not be an exotic temptation for tourists, to lie even in winter in a warm bath on top of a small island, and look out over a cool blue sea? They will feel even better if they know that these delicious sensations are a small part of our efforts to save the world from climate change, and the seas from acidification. The reaction of the olivine with water + CO₂ is exothermic, so that provides some additional heat for the water in the bath.

Additional information:

As said, the weathering reaction of olivine with water and CO2 is as follows:
Mg₂(SiO₄)  + 4 CO₂ + 4 H₂O  2 Mg²⁺ + 4 HCO3- + H₄(SiO₄)

This means that the greenhouse gas CO₂ is converted to a bicarbonate solution, so it is no longer affecting the climate.

Some possible sources of olivine in Greece

Olivine is a very common mineral. The tailings of a magnesite company in northern Greece contain close to ten million tons of crushed olivine. A port is not too far from the location of that magnesite mine. Nearer by, on the island of Naxos, there are quite a few places with olivine rocks at the surface, where the material could be obtained by a small open pit digging operation. Apart from the proposal as a touristic attraction, Greece can present it as one of their attempts to sustainably capture the greenhouse gas CO₂.

Conclusion

Removal of CO₂ from the atmosphere can be combined in a number of ways with other positive effects, which makes such operations considerably more cost-effective.


References
  1. Breemen, N. van (1976) Genesis and solution chemistry of acid sulfate soils in Thailand. PhD thesis. Agricultural University of Wageningen, 263 pp.
    http://library.wur.nl/WebQuery/wurpubs/70246
  2. Ten Berge, H.F.M., van der Meer, H.G., Steenhuizen, J.W., Goedhart, P.W., Knops, P. Verhagen, J. (2012) Olivine weathering in Soil, and its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.). A Pot Experiment. PLOS\one, 7(8): e42098.
    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042098
  3. Savchuk, K. (2016) Your brain on Carbon dioxide: Research finds low levels of indoor CO impair thinking. California Magazine/summer 2016.
    https://alumni.berkeley.edu/california-magazine/summer-2016-welcome-there/your-brain-carbon-dioxide-research-finds-even-low
  4. Allen, J.G., Macnaughton, P., Satish, U., Spengler, J.D. (2015) Association of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposure in office workers: a controlled exposure study of green and conventional office environments. Env. Health Perspectives, October 2015.
    https://ehp.niehs.nih.gov/doi/10.1289/ehp.1510037
  5. Schuiling, R.D. and de Boer, P.L. (2011) Rolling stones, fast weathering of olivine in shallow seas for cost-effective CO capture and mitigation of global warming and ocean acidification. Earth Syst. Dynam. Discuss., 2, 551-568. doi:10.5194/esdd-2-551.
    https://www.earth-syst-dynam-discuss.net/esd-2011-20/
  6. Schuiling, R.D. (2013) Farming nickel from non-ore deposits, combined with CO sequestration. Natural Science 5, no 4, 445-448.
    https://www.scirp.org/journal/PaperInformation.aspx?paperID=29842
  7. Schuiling, R.D. and Praagman, E. (2011) Olivine Hills, mineral water against climate change. Chapter 122 in Engineering Earth: the impact of megaengineering projects. Pp 2201-2206. Ed.Stanley Brunn, Springer.
    https://link.springer.com/chapter/10.1007%2F978-90-481-9920-4_122
  8. Schuiling, R.D. (2015) Serpentinite slurries against Forest Fires. Open J. Forestry, 5, 255-259.
    https://www.scirp.org/journal/PaperInformation.aspx?PaperID=54576

Further publications

• Olivine against climate change and ocean acidification, by R. D. Schuiling and Oliver Tickell (2011)
https://www.researchgate.net/publication/228429017_Olivine_against_Climate_Change_and_Ocean_Acidification

• Climate change and the KISS principle, by R.D. Schuiling, O. Tickell and S.A. Wilson (2011) Mineralogical Magazine, 75(3) 1826
https://goldschmidtabstracts.info/abstracts/abstractView?id=2011001095

• Six Commercially Viable Ways to Remove CO2 from the Atmosphere and/or Reduce CO2 Emissions, by R.D. Schuiling and Poppe L. de Boer (2013) Environmental Sciences Europe, 25, 35.
https://enveurope.springeropen.com/articles/10.1186/2190-4715-25-35

• Climate Change and CO₂ Removal from the Atmosphere, by Roelof Dirk Schuiling (2014)
https://www.scirp.org/journal/PaperInformation.aspx?PaperID=46308

• Olivine Weathering against Climate Change, by Roelof Dirk Schuiling (2017)
https://www.scirp.org/journal/PaperInformation.aspx?paperID=73520


Related

• Policies
http://arctic-news.blogspot.com/p/policies.html

• Combining Policy and Technology
http://geo-engineering.blogspot.com/2011/11/combining-policy-and-technology.html


Tuesday, July 26, 2016

It could be unbearably hot in many places within a few years time


On July 24, 2016, 21:00 UTC, it was 98.7°F or 37.1°C at the green circle on above image. Because humidity at the time was 72% and wind speed was 2 mph or 3 km/h, it felt like it was 140.4°F or 60.2°C.


Above image shows temperatures, i.e. 98.7°F or 37.1°C at the green circle.


Above image shows that relative humidity was 72% at the green circle.


This event occurred at a location on the border of Missouri and Arkansas, just within Missouri, as is also indicated by the red marker above Google Maps image.

As the EPA animation on the right illustrates, a relatively small rise in average temperature can result in a lot more hot and extremely hot weather.

The three images underneath, from the IPCC, show the effect on extreme temperatures when (a) the mean temperature increases, (b) the variance increases, and (c) when both the mean and variance increase for a normal distribution of temperature.

The 'Misery Index' is the perceived air temperature as a combination of wind chill and heat index (which combines air temperature and relative humidity, in shaded areas).

As temperatures and humidity levels keep rising, there comes a point where the wind factor no longer matters, in the sense that wind can no longer provide cooling.

The thermodynamic wet-bulb temperature is determined by temperature, humidity and pressure (hPa), and it is the lowest temperature that can be achieved by evaporative cooling of a water-wetted ventilated surface.

Once the wet-bulb temperature reaches 35°C, one can no longer lose heat by perspiration, even in strong wind, but instead one will start gaining heat from the air beyond a wet-bulb temperature of 35°C.

The above combination of 37.1°C at 72% relative humidity at a pressure of 1013 hPa translates into a wet-bulb temperature of 32.43°C. Had humidity risen to 87% while temperature remained at 37.1°C, the wet-bulb temperature would have risen above 35°C. Alternatively, had the temperature risen to 39.9°C while humidity remained at 72%, the wet-bulb temperature would also have risen above 35°C.

This goes to show how close the world is to unbearable heat. After all, this event occurred in Missouri, i.e. at some distance from the Equator, implying that, as temperatures and humidity levels keep rising, it could be unbearably hot in many places within a few years time.

As discussed in a recent post and illustrated by the image on the right, the world could be 10°C or 18°F warmer in ten years time. Accordingly, this would lead to numbers of climate-related global deaths in line with the prognosis below.


The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Wet-bulb temperature
https://en.wikipedia.org/wiki/Wet-bulb_temperature

• What is Wet Bulb temperature? By Steven Sherwood
http://web.science.unsw.edu.au/~stevensherwood/wetbulb.html

• NOAA wet bulb calculator
http://www.srh.noaa.gov/epz/?n=wxcalc_rh

• Dry Bulb, Wet Bulb and Dew Point temperatures
http://www.engineeringtoolbox.com/dry-wet-bulb-dew-point-air-d_682.html

• Heat Index
https://en.wikipedia.org/wiki/Heat_index
http://www.nws.noaa.gov/os/heat/heat_index.shtml

• NOAA Heat Index calculator
http://www.wpc.ncep.noaa.gov/html/heatindex.shtml

• Wind chill
https://en.wikipedia.org/wiki/Wind_chill

• NOAA Meteorological Conversions and Calculations
http://www.wpc.ncep.noaa.gov/html/calc.shtml

• An adaptability limit to climate change due to heat stress - by Steven Sherwood and Matthew Huber
http://www.pnas.org/content/107/21/9552.abstract

• The Deadly Combination of Heat and Humidity
http://www.nytimes.com/2015/06/07/opinion/sunday/the-deadly-combination-of-heat-and-humidity.html

• Researchers find future temperatures could exceed livable limits
http://www.purdue.edu/newsroom/research/2010/100504HuberLimits.html

• Intergovernmental Panel of Climate Change (IPCC), 3rd Assessment Report, Working Group I: The Scientific Basis
https://www.ipcc.ch/ipccreports/tar/wg1/088.htm

• A Global Temperature Rise Of More than Ten Degrees Celsius By 2026?
https://arctic-news.blogspot.com/2016/07/a-global-temperature-rise-of-more-than-ten-degrees-celsius-by-2026.html

• WMO examines reported record temperature of 54°C in Kuwait, Iraq
http://public.wmo.int/en/media/news/wmo-examines-reported-record-temperature-of-54°c-kuwait

• Extinction
https://arctic-news.blogspot.com/p/extinction.html



Sunday, July 17, 2016

High Methane Levels Follow Earthquake in Arctic Ocean

In the 12 months up to July 14, 2016, 48 earthquakes with a magnitude of 4 or higher on the Richter scale hit the map area of the image below, mostly at a depth of 10 km (6.214 miles).


As temperatures keep rising and as melting of glaciers keeps taking away weight from the surface of Greenland, isostatic rebound can increasingly trigger earthquakes around Greenland, and in particular on the faultline that crosses the Arctic Ocean.

Two earthquakes recently hit the Arctic Ocean. One earthquake hit with a magnitude of 4.5 on the Richter scale on July 9, 2016. The other earthquake hit with a magnitude of 4.7 on the Richter scale on July 12, 2016, at 00:15:24 UTC, with the epicenter at 81.626°N 2.315°W and at a depth of 10.0 km (6.214 miles), as illustrated by the image below.


Following that most recent earthquake, high levels of methane showed up in the atmosphere on July 15, 2016, over that very area where the earthquake hit, as illustrated by the image below.


Above image shows that methane levels were as high as 2505 ppb at an altitude of 4,116 m or 13,504 ft on the morning of July 15, 2016. At a higher altitude (of 6,041 m or 19,820 ft), methane levels as high as 2598 ppb were recorded that morning and the magenta-colored area east of the north-east point of Greenland (inset) looks much the same on the images in between those altitudes. All this indicates that the earthquake did cause destabilization of methane hydrates contained in sediments in that area.

Above image, from another satellite, confirms strong methane releases east of Greenland on the afternoon of July 14, 2016, while the image below shows high methane levels on July 16, 2016, along the faultline that crosses the Arctic Ocean.


The image on the right shows glaciers on Greenland and sea ice near Greenland and Svalbard on July 15, 2016. Note that clouds partly obscure the extent of the sea ice decline.


Above image shows the sea ice on July 12, 2016. There is a large area with very little sea ice close to the North Pole (left) and there is little or no sea ice around Franz Josef Land (right). Overall, sea ice looks slushy and fractured into tiny thin pieces. All this is an indication how warm the water is underneath the sea ice.

[ click on image to enlarge ]
In addition to the shocks and pressure changes caused by earthquakes, methane hydrate destabilization can be triggered by ocean heat reaching the seafloor of the Arctic Ocean. Once methane reaches the atmosphere, it can very rapidly raise local temperatures, further aggravating the situation.

Temperatures are already very high across the Arctic, as illustrated by the image below, showing that on July 16, 2016, it was 1.6°C or 34.8°F over the North Pole (top green circle), while it was 32.7°C or 90.8°F at a location close to where the Mackenzie River flows into the Arctic Ocean (bottom green circle).

Arctic sea ice is in a very bad shape, as also illustrated by the Naval Research Laboratory nowcast below.


Sea ice thickness has fallen dramatically over the years, especially the ice that was more than 2.5 m thick. The image below compares the Arctic sea ice thickness (in m) on July 15, for the years from 2012 (left panel) to 2015 (right panel), using Naval Research Laboratory images.

[ Click on image to enlarge ]
The image below shows sea surface temperature anomalies from 1961-1990 on July 24, 2016.


Sea surface temperatures off the coast of America are high and much of this ocean heat will be carried by the Gulf Stream toward the Arctic Ocean over the next few months.


On July 24, 2016, sea surface temperature near Florida was as high as 33.2°C or 91.7°F, an anomaly of 3.7°C or 6.6°F from 1981-2011 (bottom green circle), while sea surface temperature near Svalbard was as high as 17.3°C or 63.2°F, an anomaly of 12.6°C or 22.8°F from 1981-2011 (top green circle).

A cold freshwater (i.e. low salinity) lid sits on top of the ocean and this lid is fed by precipitation (rain, hail, snow, etc.), melting sea ice (and icebergs) and water running off the land (from rivers and melting glaciers on land). This lid reduces heat transfer from ocean to atmosphere, and thus contributes to a warmer North Atlantic where huge amounts of heat are now carried underneath this lid toward the Arctic Ocean. The danger is that more ocean heat arriving in the Arctic Ocean will destabilize clathrates at the seafloor and result in huge methane eruptions, as discussed in earlier posts such as this one.

As temperatures keep rising, snow and ice in the Arctic will decline. This could result in some 1.6°C or 2.88°F of warming due to albedo changes (i.e. due to decline both of Arctic sea ice and of snow and ice cover on land). Additionally, some 1.1°C or 2°F of warming could result from methane releases from clathrates at the seafloor of the world's oceans. As discussed in an earlier post, this could eventuate as part of a rise from pre-industrial levels of as much as 10°C or 18°F, by the year 2026.

[ click on image to enlarge ]



The impact of rising temperatures will be felt firstly and most strongly in the Arctic, where global warming is accelerating due to numerous feedbacks that can act as self-reinforcing cycles.

Already now, this is sparking wildfires across the Arctic.

Above image shows wildfires (indicated by the red dots) in Alaska and north Canada, on July 15, 2016.

The image on the right shows smoke arising from wildfires on Siberia. The image below shows that, on July 18, 2016, levels of carbon monoxide (CO) over Siberia were as high as 32318 ppb, and in an area with carbon dioxide (CO2) levels as low as 345 ppm, CO2 reached levels as high as 650 ppm on that day.

[ click on images to enlarge them ]
The image below shows the extent of smoke from wildfires in Siberia on July 23, 2016.


The image below shows high methane levels over Siberia on July 19, 2016.


The image below, from the MetOp satellite, shows high methane levels over Siberia on July 21, 2016.

Below are further images depicting mean global methane levels, from 1980-2016 (left) and 2012-2016 (right).

The image below shows methane levels at Barrow, Alaska.


The image below shows that, while methane levels may appear to have remained stable over the past year when taking measurements at ground level, at higher altitudes they have risen strongly.


The conversion table below shows the altitude equivalents in feet, m and mb.
57016 feet44690 feet36850 feet30570 feet25544 feet19820 feet14385 feet 8368 feet1916 feet
17378 m13621 m11232 m 9318 m 7786 m 6041 m 4384 m 2551 m 584 m
 74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.




Friday, July 15, 2016

A Global Temperature Rise Of More than Ten Degrees Celsius By 2026?

How much have temperatures risen and how much additional warming could eventuate over the next decade? The image on the right shows a potential global temperature rise by 2026 from pre-industrial levels. This rise contains a number of elements, as discussed below from the top down.

February 2016 rise from 1900 (1.62°C)

The magenta element at the top reflects the temperature rise since 1900. In February 2016, it was 1.62°C warmer compared to the year 1900, so that's a rise that has already manifested itself.

Rise from pre-industrial levels to 1900 (0.3°C)

Additional warming was caused by humans before 1900. Accordingly, the next (light blue) element from the top down uses 0.3°C warming to reflect anthropogenic warming from pre-industrial levels to the year 1900.

When also taking this warming into account, then it was 1.92°C (3.46°F) warmer in February 2016 than in pre-industrial times, as is also illustrated on the image below.


Warming from the other elements (described below) comes on top of the warming that was already achieved in February 2016.

Rise due to carbon dioxide from 2016 to 2026 (0.5°C)

The purple element reflects warming due to the amount of carbon dioxide in the atmosphere by 2026. While the IEA reported that energy-related carbon dioxide emissions had not risen over the past few years, carbon dioxide levels in the atmosphere have continued to rise, due to feedbacks that are kicking in, such as wildfires and reduced carbon sinks. Furthermore, maximum warming occurs about one decade after a carbon dioxide emission, so the full warming wrath of the carbon dioxide emissions over the past ten years is still to come. In conclusion, an extra 0.5°C warming by 2026 seems possible as long as carbon dioxide levels in the atmosphere and oceans remain high and as temperatures keep rising.

Removal of aerosols masking effect (2.5°C)

With dramatic cuts in emissions, there will also be a dramatic fall in aerosols that currently mask the full warming of greenhouse gases. From 1850 to 2010, anthropogenic aerosols brought about a decrease of ∼2.53 K, says a recent paper. While on the one hand not all of the aerosols masking effect may be removed over the next ten years, there now are a lot more aerosols than in 2010. A 2.5°C warming due to removal of part of the aerosols masking effect therefore seems well possible by the year 2026.

Albedo changes in the Arctic (1.6°C) 

Warming due to Arctic snow and ice loss may well exceed 2 W per square meter, i.e. it could more than double the net warming now caused by all emissions by people of the world, calculated Professor Peter Wadhams in 2012. A 1.6°C warming due to albedo changes (i.e. decline of both Arctic sea ice and snow and ice cover on land) therefore seems well possible by the year 2026.

Methane eruptions from the seafloor (1.1°C)

". . we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time," Dr. Natalia Shakhova et al. wrote in a paper presented at EGU General Assembly 2008. Authors found that such a release would cause 1.3°C warming by 2100. Note that such warming from an extra 50 Gt of methane seems conservative when considering that there now is only some 5 Gt of methane in the atmosphere, and over a period of ten years this 5 Gt is already responsible for more warming than all the carbon dioxide emitted by people since the start of the industrial revolution. Professor Peter Wadhams co-authored a study that calculated that methane release from the seafloor of the Arctic Ocean could yield 0.6°C warming of the planet in 5 years (see video at earlier post). In conclusion, as temperatures keep rising, a 1.1°C warming due to methane releases from clathrates at the seafloor of the world's oceans seems well possible by the year 2026.

Extra water vapor feedback (2.1°C)

Rising temperatures will result in more water vapor in the atmosphere (7% more water vapor for every 1°C warming), further amplifying warming, since water vapor is a potent greenhouse gas. Extra water vapor will result from warming due to the above-mentioned albedo changes in the Arctic and methane releases from the seafloor that could strike within years and could result in huge warming in addition to the warming that is already there now. As the IPCC says: "Water vapour feedback acting alone approximately doubles the warming from what it would be for fixed water vapour. Furthermore, water vapour feedback acts to amplify other feedbacks in models, such as cloud feedback and ice albedo feedback. If cloud feedback is strongly positive, the water vapour feedback can lead to 3.5 times as much warming as would be the case if water vapour concentration were held fixed", according to the IPCC. Given a possible additional warming of 2.7°C due to just two elements, i.e. Arctic albedo changes and seafloor methane, an additional warming over the next decade of 2.1°C due to extra water vapor in the atmosphere therefore does seem well possible by the year 2026.

Further feedbacks (0.3°C)

Further feedbacks will result from interactions between the above elements. Additional water vapor in the atmosphere and extra energy trapped in the atmosphere will result in more intense storms and precipitation, flooding and lightning. Flooding can cause rapid decomposition of vegetation, resulting in strong methane releases. Furthermore, plumes above the anvils of severe storms can bring water vapor up into the stratosphere, contributing to the formation of cirrus clouds that trap a lot of heat that would otherwise be radiated away, from Earth into space. The number of lightning strikes can be expected to increase by about 12% for every 1°C of rise in global average air temperature. At 3-8 miles height, during the summer months, lightning activity increases NOx by as much as 90% and ozone by more than 30%. The combination of higher temperatures and more lightning will also cause more wildfires, resulting in emissions such as of methane and carbon monoxide. Ozone acts as a direct greenhouse gas, while ozone and carbon monoxide can both act to extend the lifetime of methane. Such feedbacks may well result in an additional 0.3°C warming by the year 2026.

Total potential global temperature rise by 2026 (10°C or 18°F)

Adding up all the warming associated with the above elements results in a total potential global temperature rise (land and ocean) of more than than 10°C or 18°F within a decade, i.e. by 2026. As said before, this scenario assumes that no geoengineering will take place over the next decade.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.



Sunday, July 10, 2016

Extreme Weather Events


Sea ice close to the North Pole looks slushy and fractured into small pieces. The image below shows the situation on July 8, 2016.

Sea ice north of the geographic North Pole. For more on the (geo)magnetic North Pole, see this page
For reference, the bars at the bottom right show distances of 20 km and 20 miles. By comparison, sea ice in the same area did develop large cracks in 2012, but even in September 13, 2012, it was not broken up into small pieces, as shown by this image at a recent post.


As shown by above image, by Jim Pettit, Arctic sea ice volume has been in decline for decades. While this may look like a steady decline, chances are that the sea ice will abruptly collapse over the next two months, for the reasons described below.

The animation below, from the Naval Research Laboratory, shows Arctic sea ice thickness for 30 days up through July 8, 2016, including a forecast of 7 days.

Below is a new Naval Research Laboratory image, dated July 4, 2016
and contributed by Albert Kallio with the following description.


NORTH POLE SEA ICE DISAPPEARING VERY RAPIDLY 4.7.2016

Albert Kallio: The upgraded US Navy sea ice thickness system revealed extreme rates of sea ice pulverization and melting on 4.7.2016 which justifies a continued close attention to the developments on the Arctic Ocean. Due to virtually continuous storm centering the North Pole for weeks now, warm water upswells and sea water mixing drives base melting of icefloes besides wave actions that both wash and pulverize broken sea ice. The more pulverized sea ice becomes, the greater its 3-dimensional surface area that sits in water becomes, this easing transfer of heat from ocean to sea ice. In addition, honeycombing of ice also flushes ice with water in a stormy weather. The final factor being that most of sea ice is very recent (seasonal) ice that contain residues of salts, when saline brine is expelled this creates boreholes into ice making it "rotten ice" easily.
https://www7320.nrlssc.navy.mil/GLBhycomcice-12/navo/arcticictn_nowcast_anim30d.gif
Sea ice decline reflects the extra energy added to the Arctic, as global warming and feedbacks are hitting the Arctic particularly strongly. Three of these feedbacks are depicted in the image on the right.

As the sea ice melts, sea surface temperatures will remain at around zero degree Celsius (32°F) for as long as there is ice in the water, since the extra energy will first go into melting the ice. Only after the ice has melted will the extra energy start raising the temperature of the water.

Sea ice thus acts as a buffer that absorbs heat, preventing sea surface temperature from rising. As
sea ice is busy melting, each gram of ice takes 334 Joule of heat to change into water, while the temperature remains steady at 0°C ( 32°F).

Once all ice has turned into water, all further heat goes into raising the temperature of the water. To raise the temperature of each gram of water by one degree Celsius then takes only 4.18 Joule of heat.

In other words, melting of the ice absorbs 8 times as much heat as it takes to warm up the same mass of water from zero to 10°C. As sea ice disappears, extra energy instead goes into raising the temperature of the water, as depicted in the image on the right, and as further described at the feedbacks page as feedback #14.

Sea ice can reflect as much as 90% of the sunlight back into space. Once the ice has melted away, the water of the ocean reflects only 6% of the incoming solar radiation and absorbs the rest. Albedo change is depicted in above image as feedback #1. As Professor Peter Wadhams once calculated, warming due to Arctic snow and ice loss could more than double the net warming now caused by all emissions by all people of the world.

Professor Peter Wadhams on albedo changes in the Arctic, image from Edge of Extinction
Once the sea ice has disappeared, a lot more energy will get absorbed by the Arctic Ocean, i.e. energy that was previously reflected back into space and energy that previously went into changing ice into water.

Furthermore, as the sea ice disappears, chances increase that storms will develop that come with rain and winds that can batter and push the remaining sea ice out of the Arctic Ocean, while storms can also increase the amount of water vapor in the atmosphere and the occurrence of cirrus clouds that can trap heat.

Methane is a further feedback, depicted as feedback #2 in the image further above. As the water of the Arctic Ocean gets warmer, the danger increases that heat will reach hydrates at the seafloor and that this will trigger release of huge amounts of methane, in an additional self-reinforcing feedback loop that will make warming in the Arctic accelerate further and that threatens to escalate into a third kind of warming, i.e. runaway warming. Peter Wadhams co-authored a study that calculated that methane release from the seafloor of the Arctic Ocean could yield 0.6°C warming of the planet in 5 years (see video at earlier post).


As above image shows, methane on July 8, 2016, reached levels as high as 2655 ppb. Such high levels typically occur due to methane hydrates getting destabilized. As the sea ice disappears, the situation could get worse rapidly, as illustrated by the images below.

July 5, 2016, sea surface was as warm as 17.1°C / 62.7°F at green circle, i.e. 13.7°C / 24.7°F warmer than 1981-2011. 
These high sea surface temperature anomalies are the result of warmer water getting carried by the Gulf Stream below the sea surface of the Atlantic Ocean into the Arctic Ocean. The water carried into the Arctic Ocean is both warmer and saltier than the water at the surface, as the fresh cold meltwater forms a lid at the surface. At areas around Svalbard where the sea is rather shallow, the warmer water comes to the surface. These high anomalies thus indicate how much warmer the water now is that is entering the Arctic Ocean, as discussed in earlier posts such as this one.
image from previous post
The rapid recent rise in ocean heat is illustrated by above image, showing that oceans on the Northern Hemisphere in May 2015 through April 2016 were 0.93°C warmer than the 20th century average, whereas for the equivalent 2012 period the anomaly was merely 0.46°C. In other words, there now is more ocean heat, making the possibility of methane hydrates destabilization more threatening.

Meanwhile, the speed at which the Arctic is warming is changing the jet streams, as discussed by Paul Beckwith in the video below, following Paul's earlier video that's included in an earlier post.



There are many indications that changes to the climate are accelerating, causing extreme weather events to hit with increasing strength and intensity. Water vapor is a potent greenhouse gas and for each degree Celsius that temperatures rise, the atmosphere can hold 7% more water vapor, which will also lead to stronger storms such as cyclones. On the image below, typhoon Nepartak is approaching Taiwan, with wind speed as high as 103 mph or 165 km/h, and with cloud water as much as 9 kg per square m on July 7, 2016.

Nepartak approaching Taiwan on July 7, 2016, with wind speed as high as 103 mph or 165 km/h (left panel), and with cloud water as much as 9 kg per square m (right panel)
NASA image
According to NASA, very powerful storms near the center of Nepartak's circulation were found to be dropping rain at a rate of over 193 mm (7.6 inches) per hour. Tall thunderstorms called "hot towers" were found to reach heights of 17.0 km (about 10.5 miles).

The image on the right shows a thermal image of Typhoon Nepartak on July 7 at 17:45 UTC. The colder the cloud tops, the higher they are in the troposphere and the stronger the storms.

On July 7, 2016, at 1500 UTC, Nepartak's maximum sustained winds had reached 150 knots (172.6 mph/ 277.8 kph), generating waves as high as 48 feet (14.6 meters).

Strong storms can bring water vapor high up into the stratosphere, contributing to the formation of cirrus clouds that trap a lot of heat that would otherwise be radiated away, from Earth into space.

Altogether, the combined global temperature rise due to global warming and feedbacks could exceed 10°C or 18°F within a decade, as discussed in previous posts such as this one.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

 The North Geographic Pole, the North Magnetic Pole and the North Geomagnetic Pole
http://wdc.kugi.kyoto-u.ac.jp/poles/polesexp.html

 Three Kinds of Warming in the Arctic
http://arctic-news.blogspot.com/2016/02/three-kinds-of-warming-in-arctic.html

 NASA: Napartak (July 9, 2016)
https://www.nasa.gov/feature/goddard/2016/napartak-nw-pacific-ocean

 Jim Pettit Climate Graphs
http://iwantsomeproof.com/3d/siv-ds-weekly-3d.asp