Saturday, August 30, 2014

Ring Of Ice



Prominence of earthquakes in North America and around Greenland has prompted a team of researchers led by Arctic-news blog editor Sam Carana to coin the phrase “Ring Of Ice” to describe what they see happening in the Arctic.

“Melting of ice in north Canada and on Greenland is causing pressure changes, resulting in seismic activity”, explains Sam Carana.

Heavy seismic activity is ocurring along the faultlines that constitute the border of the North American Plate, similar to the the heavy activity along the Ring Of Fire around the Pacific Ocean.

Seismic activity roughly follows the borders of the North American Plate, which includes Greenland. However, where the major fault bends away to the west following the Aleutian Islands, seismic activity continues north through Alaska along a line that extends over the North Pole toward Svalbard.

This northward path through Alaska is illustrated by the earthquakes on the image below.


“Earthquakes are prominent along the entire border of the North American Plate”, Sam Carana adds, “but they increasingly appear to be taking this shortcut through Alaska and the underlying cause of this is melting of ice in north Canada and on Greenland”.

“This Ring Of Ice spells danger, just like the name Ring Of Fire indicates danger”, Sam Carana concludes. “The name Ring Of Fire warns about possible volcanoes, earthquakes, landslides and tsunamis. The Ring Of Ice seems even more dangerous, since seismic activity could destabilize methane hydrates contained in sediments under the Arctic Ocean, and could trigger huge methane eruptions. The fault line running from Greenland to Siberia is the most dangerous area on Earth in that respect”.

From the earlier post High Methane Levels over Laptev Sea







Warming waters threaten to trigger methane eruptions from Arctic Ocean seafloor


K. Tung / Univ. of Washington. (Top) Global
average surface temperatures, where black dots
are yearly averages. Two flat periods (hiatus)
are separated by rapid warming from 1976-1999.
(Middle) Observations of heat content, compared
to the average, in the north Atlantic Ocean.
(Bottom) Salinity of the seawater in the same
part of the Atlantic. Higher salinity is seen
to coincide with more ocean heat storage.
A new study looks at how, in the 21st century, surface warming slowed as more heat moved deeper into the oceans, specifically the North Atlantic.

Sun-warmed salty water travels north along ocean currents in the Atlantic. When this saltier water reaches the North Atlantic, its greater density causes it to sink. From about 1999, this current began to speed up and draw heat deeper into the ocean.

These huge amounts of heat moving deeper into the Atlantic Ocean are very worrying.

The image below shows that sea surface temperatures have reached extremely high levels on the Northern Hemisphere, where sea surface temperature anomalies as high as 1.78 degrees Celsius were recorded on August 19, 2014.

As discussed in an earlier post, water carried by the Gulf Stream below the surface can be even warmer than surface waters. As the post discusses, high sea surface temperatures west of Svalbard indicate that the Gulf Stream can carry very warm water (warmer than 16°C) at greater depths and is pushing this underneath the sea ice north of Svalbard. Similarly, warm water from greater depth comes to the surface where the Gulf Stream pushes it against the west coast of Novaya Zemlya.


Very warm water is now invading the Arctic Ocean through the Bering Strait from the Pacific Ocean, while very warm water is also traveling on the back of the Gulf Stream from the North Atlantic into the Arctic Ocean.


The danger is that this warm water will destabilize hydrates contained in sediments under the Arctic Ocean and trigger huge methane eruptions.

Rising methane levels over the past few years are ominous in this respect. The image below shows very high mean global methane levels on August 28, 2014, while methane readings as high as 2561 ppb were recorded on that day.

Methane Levels -  see earlier post for a discussion of IPCC/NOAA data

In conclusion, the situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.



References and Related Links

- Varying planetary heat sink led to global-warming slowdown and acceleration
by Xianyao Chen and Ka-Kit Tung.
http://www.sciencemag.org/content/345/6199/897

- Cause of global warming hiatus found deep in the Atlantic Ocean
University of Washington News Release
http://www.washington.edu/news/2014/08/21/cause-of-global-warming-hiatus-found-deep-in-the-atlantic-ocean

- Horrific Methane Eruptions in East Siberian Sea
http://arctic-news.blogspot.com/2014/08/horrific-methane-eruptions-in-east-siberian-sea.html

- Methane Buildup in the Atmosphere
http://arctic-news.blogspot.com/2014/04/methane-buildup-in-atmosphere.html

- Climate Plan blog
http://climateplan.blogspot.com



Friday, August 29, 2014

No new laws needed for President Obama to act

For anyone attending the September 23, 2014, Climate Summit in New York, it is important to bring the message that, while Congress may seek to deny the physical and legal realities, President Obama can and should act on climate change.


As you know, Sam Carana advocates comprehensive and effective action as discussed at the Climate Plan blog. You can share the message on facebook by clicking on the image below.


Links

- Climate Summit (Wikipedia)
http://en.wikipedia.org/wiki/Climate_Summit

- U.N. Climate Summit 2014
http://www.un.org/climatechange/summit

- Climate Plan
http://climateplan.blogspot.com



Tuesday, August 26, 2014

Very warm waters are invading the Arctic Ocean

Global mean methane levels as high as 1836 parts per billion were recorded at several altitudes on August 24, 2014. Meanwhile, the Arctic Ocean continues to warm up. As the image below shows, the ocean heat is felt strongly on the Northern Hemisphere.
Very warm waters from the North Pacific and the North Atlantic Oceans are now invading the Arctic Ocean. Never before in human history have these waters been this warm. In the Arctic Ocean, this is causing very high sea surface temperatures, as shown on the image below.

[ click on image to enlarge ]
The very high temperatures threaten to trigger all kinds of feedbacks, as described in the image below.

Feedbacks in the Arctic
The big danger is that, as the seabed warms up, methane will erupt from hydrates in sediments under the Arctic Ocean. The situation is dire and calls for comprehensiev and effective action, as discussed at the Climate Plan blog.