Wednesday, October 30, 2013

Greenland Sea hit by M5.3 Earthquake

An earthquake with a magnitude of 5.3 on the Richter scale hit the Greenland Sea near Svalbard on October 28, 2013.

[ Earthquake indicated by orange dot - click on image to enlarge ]

For a long time, huge sea surface temperature anomalies have shown up in the area where the earthquake hit. The image below compares the situation before and after the earthquake hit.

[ click on image to enlarge ]

These huge sea surface temperature anomalies were discussed before, in the September 19, 2013, post Is the North Pole now ice-free?

This post mentions that sea surface temperatures in some spots close to Svalbard are far higher than even in the waters closer to the Atlantic Ocean. In some of these spots, sea surface temperatures are well over 10°C (50°F).

The post continues: Where does this heat come from? These hot spots could be caused by undersea volcanic activity; this is the more dangerous as this area has seen methane bubbling up from destabilized hydrates before; the dangers of this situation have been discussed repeatedly, e.g. in the April 2011 post Runaway Global Warming.

Indeed, the big danger is large abrupt release of methane from destabilized hydrates. At the moment, the amount of methane entering the atmosphere over the Arctic Ocean is already huge, as illustrated by the image below that shows high methane readings over the past few days.

[ click on image to enlarge ]

We'll keep monitoring the situation.

Monday, October 28, 2013

Methane over Arctic Ocean is increasing


[ click on image to enlarge ]

Above image shows the Northern Hemisphere on October 26 - 27, 2013, a period of just over one day. Methane readings of 1950 ppb and higher show up in yellow. Peak reading on October 27, 2013, was 2369 ppb.

The image below, created by Harold Hensel with methanetracker, shows methane over the Arctic Ocean in three ranges, with the highest readings (1950 ppb and higher) in red.

[ click on image to enlarge ]
Harold adds: "Methane increased again in the Arctic Circle yesterday, 10/27/2013. So what were the headlines in the news? It wasn't this which is more important than anything the media has to report. This is surreal to me." - at Facebook

Related

- The Unfolding Methane Catastrophe
http://arctic-news.blogspot.com/2013/10/unfolding-methane-catastrophe.html

- Methane hydrates
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

- Myths about methane hydrates
http://methane-hydrates.blogspot.com/p/myths.html

- High Methane Readings continue over Depth of Arctic Ocean
http://arctic-news.blogspot.com/2013/10/high-methane-readings-continue-over-depth-of-arctic-ocean.html

- Abrupt Climate Change
http://arctic-news.blogspot.com/2013/10/abrupt-climate-change.html

- Just do NOT tell them the monster exists
http://arctic-news.blogspot.com/2013/10/just-do-not-tell-them-the-monster-exists.html



How Do We Act in the Face of Climate Chaos?

Guy McPherson


Guy R. McPherson is Professor Emeritus of Natural Resources
and 
Ecology & Evolutionary Biology at University of Arizona.
Below are some (slighly edited) extracts from a post at Guy
McPherson's website: 
summary and update on climate change.




The Warning

As described by the United Nations Advisory Group on Greenhouse Gases in 1990, temperature rise “beyond 1 degree C may elicit rapid, unpredictable and non-linear responses that could lead to extensive ecosystem damage”.

We’ve clearly triggered the types of positive feedbacks the United Nations warned about in 1990. Yet my colleagues and acquaintances think we can and will work our way out of this horrific mess with permaculture (which is not to denigrate permaculture, the principles of which are implemented at the mud hut). Reforestation doesn’t come close to overcoming combustion of fossil fuels, as pointed out in the 30 May 2013 issue of Nature Climate Change. Furthermore, forested ecosystems do not sequester additional carbon dioxide as it increases in the atmosphere, as disappointingly explained in the 6 August 2013 issue of New Phytologist.

Here’s the bottom line: On a planet 4 C hotter than baseline, all we can prepare for is human extinction (from Oliver Tickell’s 2008 synthesis in the Guardian).

John Davies concludes: “The world is probably at the start of a runaway Greenhouse Event which will end most human life on Earth before 2040.” He considers only atmospheric carbon dioxide concentration, not the many self-reinforcing feedback loops described below. 


Positive feedbacks
Positive feedbacks
Methane hydrates are bubbling out the Arctic Ocean (Science, March 2010). According to NASA’s CARVE project, these plumes were up to 150 kilometers across as of mid-July 2013. Whereas Malcolm Light’s 9 February 2012 forecast of extinction of all life on Earth by the middle of this century appears premature because his conclusion of exponential methane release during summer 2011 was based on data subsequently revised and smoothed by U.S. government agencies, subsequent information — most notably from NASA’s CARVE project — indicates the grave potential for catastrophic release of methane. Catastrophically rapid release of methane in the Arctic is further supported by Nafeez Ahmed’s thorough analysis in the 5 August 2013 issue of the Guardian as well as Natalia Shakhova’s 29 July 2013 interview with Nick Breeze (note the look of abject despair at the eight-minute mark).
Warm Atlantic water is defrosting the Arctic as it shoots through the Fram Strait (Science, January 2011).
Siberian methane vents have increased in size from less than a meter across in the summer of 2010 to about a kilometer across in 2011 (Tellus, February 2011)
Drought in the Amazon triggered the release of more carbon than the United States in 2010 (Science, February 2011). In addition, ongoing deforestation in the region is driving declines in precipitation at a rate much faster than long thought, as reported in the 19 July 2013 issue of Geophysical Research Letters.
Peat in the world’s boreal forests is decomposing at an astonishing rate (Nature Communications, November 2011)
Invasion of tall shrubs warms the soil, hence destabilizes the permafrost (Environmental Research Letters, March 2012)
Methane is being released from the Antarctic, too (Nature, August 2012). According to a paper in the 24 July 2013 issue of Scientific Reports, melt rate in the Antarctic has caught up to the Arctic.
Russian forest and bog fires are growing (NASA, August 2012), a phenomenon consequently apparent throughout the northern hemisphere (Nature Communications, July 2013). The New York Times reports hotter, drier conditions leading to huge fires in western North America as the “new normal” in their 1 July 2013 issue. A paper in the 22 July 2013 issue of the Proceedings of the National Academy of Sciences indicates boreal forests are burning at a rate exceeding that of the last 10,000 years.
Cracking of glaciers accelerates in the presence of increased carbon dioxide(Journal of Physics D: Applied Physics, October 2012)
The microbes have joined the party, too, according to a paper in the 23 February 2013 issue of New Scientist
Summer ice melt in Antarctica is at its highest level in a thousand years: Summer ice in the Antarctic is melting 10 times quicker than it was 600 years ago, with the most rapid melt occurring in the last 50 years (Nature Geoscience, April 2013). Although scientists have long expressed concern about the instability of the West Atlantic Ice Sheet (WAIS), a research paper published in the 28 August 2013 of Nature indicates the East Atlantic Ice Sheet (EAIS) has undergone rapid changes in the past five decades. The latter is the world’s largest ice sheet and was previously thought to be at little risk from climate change. But it has undergone rapid changes in the past five decades, signaling a potential threat to global sea levels. The EAIS holds enough water to raise sea levels more than 50 meters.
Surface meltwater draining through cracks in an ice sheet can warm the sheet from the inside, softening the ice and letting it flow faster, according to a study accepted for publication in the Journal of Geophysical Research: Earth Surface (July 2013). It appears a Heinrich Event has been triggered in Greenland. Consider the description of such an event as provided by Robert Scribbler on 8 August 2013:
In a Heinrich Event, the melt forces eventually reach a tipping point. The warmer water has greatly softened the ice sheet. Floods of water flow out beneath the ice. Ice ponds grow into great lakes that may spill out both over top of the ice and underneath it. Large ice damns (sic) may or may not start to form. All through this time ice motion and melt is accelerating. Finally, a major tipping point is reached and in a single large event or ongoing series of such events, a massive surge of water and ice flush outward as the ice sheet enters an entirely chaotic state. Tsunamis of melt water rush out bearing their vast floatillas (sic) of ice burgs (sic), greatly contributing to sea level rise. And that’s when the weather really starts to get nasty. In the case of Greenland, the firing line for such events is the entire North Atlantic and, ultimately the Northern Hemisphere.
Breakdown of the thermohaline conveyor belt is happening in the Antarctic as well as the Arctic, thus leading to melting of Antarctic permafrost (Scientific Reports, July 2013)
Loss of Arctic sea ice is reducing the temperature gradient between the poles and the equator, thus causing the jet stream to slow and meander. One result is the creation of weather blocks such as the recent very high temperatures in Alaska. As aresultboreal peat dries and catches fire like a coal seam. The resulting soot enters the atmosphere to fall again, coating the ice surface elsewhere, thus reducing albedo and hastening the melting of ice. Each of these individual phenomena has been reported, albeit rarely, but to my knowledge the dots have not been connected beyond this space. The inability or unwillingness of the media to connect two dots is not surprising, and has been routinely reported (recently including here with respect to climate change and wildfires) (July 2013)
Earthquakes trigger methane release, and consequent warming of the planet triggers earthquakes, as reported by Sam Carana at Arctic-news (October 2013)
Arctic drilling was fast-tracked by the Obama administration during the summer of 2012
Supertankers are taking advantage of the slushy Arctic, demonstrating that every catastrophe represents a business opportunity, as pointed out by Professor of journalism Michael I. Niman and picked up by Truthout (ArtVoice, September 2013)
As nearly as I can distinguish, only the latter feedback process is reversible at a temporal scale relevant to our species. Once you pull the tab on the can of beer, there’s no keeping the carbon dioxide from bubbling up and out. These feedbacks are not additive, they are multiplicative. Now that we’ve entered the era of expensive oil, I can’t imagine we’ll voluntarily terminate the process of drilling for oil and gas in the Arctic (or anywhere else). Nor will we willingly forgo a few dollars by failing to take advantage of the long-sought Northwest Passage.

Robin Westenra provides an assessment of these positive feedbacks at Seemorerocks on 14 July 2013. It’s worth a look.


Earth-system scientist Clive Hamilton concludes in his April 2013 book Earthmasters that “without [atmospheric sulphates associated with industrial activity] … Earth would be an extra 1.1 C warmer.” In other words, collapse takes us directly to 2 C within a matter of weeks. 

Several other academic scientists have concluded, in the refereed journal literature no less, that the 2 C mark is essentially impossible (for example, see the review paper by Mark New and colleagues published in the 29 November 2010 issue of the Philosophical Transactions of the Royal Society A). 

The German Institute for International and Security Affairs concluded 2 June 2013 that a 2 C rise in global-average temperature is no longer feasible (and Spiegel agrees, finally, in their 7 June 2013 issue), while the ultra-conservative International Energy Agency concludes that, “coal will nearly overtake oil as the dominant energy source by 2017 … without a major shift away from coal, average global temperatures could rise by 6 degrees Celsius by 2050, leading to devastating climate change.” 

Image from: The two epochs of Marcott, by Jos Hagelaars

At the 11:20 mark of this video, climate scientist Paul Beckwith indicates Earth could warm by 6 C within a decade. 

If you think his view is extreme, consider: 
  1. the 5 C rise in global-average temperature 55 million years ago during a span of 13 years (reported in the 1 October 2013 issue of Proceedings of the National Academy of Sciences); and also 
  2. the reconstruction of regional and global temperature for the past 11,300 years published in Science in March 2013. One result is shown in the above figure.

How Do We Act in the Face of Climate Chaos?

Below is a video of a recent presentation by Guy McPherson. 

Presentation by Guy McPherson in Boulder, Colorado on October 16, 2013.

Below are some extracts from the video, again slightly edited.

Malcolm Light in 2012 concluded, based on data from NOAA and NASA, that methane release had gone exponential and was leading to the demise of all life on Earth, not just human extinction, by the middle of the century.

So 3.5 C to 4 C is almost certainly a death sentence for all human beings on the planet, not because it'll be a warmer planet, but because the warming of the planet will remove all habitat for human beings. Ultimately we're human animals like other animals, we need habitat to survive.

Changes we see in three or four decades happen as a result of what we do today. There's a huge lag between our actions today in the consequences down the road in terms of the Earth's planetary systems.

Without plankton in the ocean, there goes roughly half the global food supply. The ability to lose land plants is growing rapidly and there goes the other half for the food supply for human beings. If we have up to 5 C by 2050, that'll certainly do the trick.

Why is this happening? It's civilization that drove us into population overshoot. We cannot go back anymore since 1939, since we invented nuclear armageddon. There's no going back. If we ceased the set of living arrangements at this point, the world's 400 or so nuclear power plants melt down catastrophically and we're all dead in a month. We cannot terminate industrial civilization until we decommission all nuclear power plants. It takes at least 20 years to decommission a nuclear power plant.

The bad news is that means that the world's four hundred or so nuclear power plants meltdown catastrophically in a short period of time. Fukushima represent a major threat to humanity. If they fail in moving the spent fuel rods next month, according to nuclear researcher Christina Consola, if one of those MOX fuel rods is exposed to the air, one of the 1565, it will kill 2.89 billion people on the planet in a matter of weeks, so nuclear catastrophe is right there on the horizon. 

People ask me: Why are you presenting this horrible information?

Action is the antidote to despair even if the action is hopeless. When a medical doctor knows that somebody has cancer, it's malpractice if they don't tell that. So I'm doing that. I think Bill McKibben and James Hansen and a whole bunch of climate scientists are guilty of malpractice. Because they know what I know. Almost every politician in the country knows what I know. All the leaders of the big banks know what I know. And they're lying to us.

I'm just presenting the information from other scientists here. I'm trying to the widest extent possible not to infuse my opinion in the situation. It's John Davies who on September 20, 2013, taking into account only carbon dioxide, says there will be few people left on the planet by 2040. It's Malcolm Light, writing in February 2012, who assesses the methane situation. And so on.

Yes, I agree with them, and that agreement is illustrated by me showing you that information.

I promote resistance against this omnicidal culture, not in the hope that it will save our species, but in the hope that it will save other species. Because as E.O. Wilson, biologist at Harvard, points out, it only takes 10 million years after a great extinction event, before you have a blossoming full rich planet again. That's what we're working toward. We're saving habitat for other species at this point.


Saturday, October 26, 2013

Earthquake hits waters off Japan

An earthquake with a magnitude of 7.3 on the Richter scale hit the waters 231 miles (371 kilometers) east of Japan on October 25, 2013, reports rt.com, adding that the quake prompted an evacuation at the devastated Fukushima Daiichi plant and that strong tremors could be felt on Japan’s main Honshu Island, as well as on the northern island of Hokkaido.

USGS.gov reported the quake as having a magnitude of 7.1 followed up by several smaller quakes, as indicated on the image below, which also indicates the location of Fukushima.

[ click to enlarge ]

The image below shows that methane readings of 1950+ were recorded on and around the location where the earthquake hit. The image merely shows methane that did enter the atmosphere. More methane will have escaped from the seabed, but much of it will have oxidized in the water.


The occurence of this earthquake is very worrying, due to the situation at the Fukushima Daiichi nuclear plant. It is also relevant to the situation in the Laptev Sea, north of Siberia, for a number of reasons, including: 
  1. As the above image clearly shows, earthquakes can trigger methane releases from the seabed, as previously discussed in the post Methane Release caused by Earthquakes.
  2. Global warming is contributing to the occurance of earthquakes. For years, geophysical hazard specialist Bill McGuire has studied this impact of global warming, in particular the Earth's crust bouncing and bending in response to the melting of the great ice sheets and the filling of the ocean basins—dramatic geophysical events that triggered earthquakes, spawned tsunamis, and provoked a series of eruptions from the world's volcanoes. Bill McGuire warns that staggering volumes of melt water poured into the ocean basins, warping and bending the crust around their margins. The resulting tossing and turning provoked a huge resurgence in volcanic activity, seismic shocks, and monstrous landslides—the last both above the waves and below.

    According to calculations posted by Doyle Doss in January 2012, the increase in weight of the Pacific Ocean over the last 50 years due to freshly introduced water from land ice melt is 10 Trillion 331 Billion 125 Million 200 Thousand TONS. In conclusion, global warming is making methane releases triggered by seismic activity worse. 
  3. The fault lines around Japan are interconnected with other fault lines, as illustrated by the image below, from the post High Methane Levels over Laptev Sea, showing methane readings on October 20, 2013 pm. Earthquakes can trigger further earthquakes, especially along the same or interconnected fault lines. 


The image below shows methane readings on October 25, 2013 pm, indicating that high methane readings continue to be recorded over the Laptev Sea.

[ click to enlarge ]
The above image also shows that the Laptev Sea was hit by an earthquake with a magnitude of 4.6 on the Richter scale on September 28, 2013. Earlier, on August 7 and on September 9, earthquakes with similar magnitudes had hit the Laptev Sea closer to land, as described in the post Earthquake hits Laptev Sea.

For more than a month, large amounts of methane have been present over the Arctic Ocean, in particular over the Gakkel Ridge and, more recently, also over the Laptev Rift.

Sediments under the Arctic Ocean contain huge amounts of methane in the form of hydrates and free gas. Some areas, such as the Gakkel Ridge and the Laptev Rift are prone to earthquakes, volcanoes and landslides, as they are part of a tectonic fault line that crosses the Arctic Ocean.

The danger is that, as the permafrost retreats and the snow and ice cover declines rapidly, methane in the Arctic is on the brink of being released abruptly and in large quantities from the seabed. A single earthquake, perhaps even outside of the Arctic Ocean could set this off. There are many more factors that influence seismic activity, such as the position of sun, moon and stars, and the depth at which seismic activity occurs, as tremors can be felt far away from earthquakes that occur at greater depth. Anyway, the danger is that earthquakes will trigger abrupt release of methane from the seabed of the Arctic Ocean, and since methane is a powerful greenhouse gas, such a release could further accelerate local warming, triggering further destabilization of methane in the seabed, escalating into abrupt climate change across the globe.

The depth of the seabed is also important in this regard, since shallow seas can warm up rapidly, while methane that escapes from the seabed has less chance to get oxidized in shallow seas. Large parts of the Arctic Ocean are very shallow, in particular the Laptev Sea, as further descibed in the post methane hydrates.