Showing posts sorted by date for query methane plume. Sort by relevance Show all posts
Showing posts sorted by date for query methane plume. Sort by relevance Show all posts

Thursday, June 18, 2020

2020 Siberian Heatwave continues


Very high temperatures hit Northern Europe and Eastern Siberia near the Arctic Ocean on June 18, 2020. This is a continuation of the heatwave that hit Siberia in May 2020.

The image below, from an earlier post, shows temperature anomalies that were forecast to be at the high end of the scale over Siberia on May 22, 2020, 06:00 UTC, i.e. 30°C or 54°F higher than 1979-2000. At the same time, cold temperatures were forecast for much of eastern Europe.


What enables such a strong heatwave to develop is that the Jet Stream is getting more wavy as the temperature difference between the North Pole and the Equator is narrowing, causing both hot air to move up into the Arctic (red arrow) and cold air to descend out of the Arctic (blue arrow).

On June 19, 2020, at 03:00 UTC, a temperature of 33.2°C or 91.8°F was recorded in Siberia near the Arctic Ocean (green circle).


The image below shows a temperature forecast of 33.5°C or 92.2°F in Siberia near the Arctic Ocean on June 20, 2020, at 03:00 UTC (green circle).


The image below is a forecast for June 23, 2020, showing how a distorted Jet Stream enables cold air to move down into Russia, while at the same time enabling hot air to move north over Scandinavia and Siberia, near the Arctic Ocean.


The image below is a forecast for June 25, 2020, showing the coast of Siberia near the Arctic Ocean getting hit by temperature anomalies at the top end of scale, i.e. 30°C or 54°F higher than 1979-2000.


The image on the right is an update, showing how wavy the Jet Stream turned out to be on June 25, 2020.

This facilitates hot air getting carried north over Western Europe, East Siberia and through the Bering Strait, while cold air is moving south over the European part of Russia. Blocking patterns that prolong such a situation go hand in hand with a more wavy Jet Stream.

Record High Temperature in Arctic

The image below shows that temperatures in Siberia were as high as 40°C or 104°F at 5 cm above the ground on June 21, 2020, at 3 pm, the Ventusky.com map shows.


This indicates how much the soil of what once was permafrost is heating up. At 2 m above ground level, i.e. the default height for air temperature measurements, it was 30°C or 86°F, as the image below shows. The location marked by the star is at 71°28' North latitude and 142°59' East longitude, and at and altitude of 13 m.


The day before, Verkhoyansk in Siberia reached a temperature of 38°C or 100.4°F on June 20, 2020, a record high for the Arctic. Verkhoyansk is located at 67°55′ North latitude.

Both locations are well north of the Arctic Circle that - at 66°30′ N - constitutes the southern limit of the area within which, for one day or more each year, the Sun does not set (about June 21) or rise (about December 21).

High Ocean Temperatures

The heatwave is heating up the sea surface of the East Siberian Arctic Shelf (ESAS), as illustrated by above image. The ESAS is quite shallow, making that heat can quickly reach the seafloor.

Additionally, the heatwave is heating up rivers that carry large amounts of hot water into the Arctic Ocean.

The image on the right shows sea surface temperatures in the Bering Strait as high as 18.9°C or 66.02°F on June 22, 2020.

The nullschool.net website shows that sea surface temperatures in the Bering Strait were as high as 16.1°C or 60.9°F on June 20, 2020, in the Bering Strait (in Norton Sound, Alaska), i.e. 15.1°C or 27.2°F hotter than 1981-2011.


In summary, the Arctic Ocean is heating up in a number of ways:

- Sea currents are moving hot water from the Pacific Ocean into the Arctic Ocean. Similarly, sea currents are moving hot water from the Atlantic Ocean into the Arctic Ocean.

- The Siberian heatwave is heating up the sea surface of the ESAS.

- The heatwave is heating up rivers that carry large amounts of hot water into the Arctic Ocean.

- Numerous feedbacks can speed up the temperature rise, such as changes to the jet stream that can prolong heatwaves and make them more intense.

The rising temperatures result in record low Arctic sea ice volume, as illustrated by the image on the right and as also discussed in an earlier post.

Heat threatens to destabilize methane hydrates

As discussed in earlier posts such as this one, this heat threatens to destabilize methane hydrates contained in sediments at the seafloor of the Arctic Ocean.


As the panel on the left shows, sea surface temperatures in the Bering Strait were as much as 15.1°C or 27.2°F hotter than 1981-2011 on June 20, 2020 (in Norton Sound, Alaska, at the green circle).

The bathymetry map in the right panel of above image shows how shallow seas in the Arctic Ocean can be. The water over the ESAS is quite shallow, making that the water can warm up very quickly during summer heat peaks and heat can reach the seafloor, which comes with the risk that heat will penetrate cracks in sediments at the seafloor. Melting of ice in such cracks can lead to abrupt destabilization of methane hydrates contained in sediments.

Large abrupt methane releases will quickly deplete the oxygen in shallow waters, making it harder for microbes to break down the methane, while methane rising through waters that are shallow can enter the atmosphere very quickly.

The situation is extremely dangerous, given the vast amounts of methane present in sediments in the ESAS, given the high global warming potential (GWP) of methane following release and given that over the Arctic there is very little hydroxyl in the air to break down the methane.

[ from earlier post ]

Ominously, the MetOp-1 satellite recorded a peak methane level of 2847 parts per billion on the afternoon of June 24, 2020, at 469 mb.


The next day, on the afternoon of June 25, 2020, MetOp-1 recorded a mean methane level of 1903 parts per billion at 293 mb. The 469 mb pressure level on above image corresponds with altitude of 6,041 m or 19,820 feet on the conversion table below. The 293 mb mean on the image below corresponds with a much higher altitude, i.e. 9,318 m or 30,570 feet on the conversion table below.


Methane reaching the Stratosphere

The MetOp satellites typically record the highest annual mean methane level in September. The image below, from an earlier post, shows that on the afternoon of September 30, 2019, the MetOp-1 satellite recorded the highest mean methane level, i.e. 1914 parts per billion, at 293 mb.


Above image shows that methane levels have risen most at higher altitude over the years. As discussed in an earlier post, methane eruptions from the Arctic Ocean can be missed by measuring stations that are located on land and that often take measurements at low altitude, thus missing the methane that rises in plumes from the Arctic Ocean. Since seafloor methane is rising in plumes, it hardly shows up on satellite images at lower altitude either, as the methane is very concentrated inside the area of the plume, while little or no increase in methane levels is taking place outside the plume. Since the plume will cover less than half the area of one pixel, such a plume doesn't show up well at low altitudes on satellite images.

Over the poles, the Troposphere doesn't reach the heights it does over the tropics. At higher altitudes, methane will follow the Tropopause, i.e. the methane will rise in altitude while moving closer to the Equator.

Methane rises from the Arctic Ocean concentrated in plumes, pushing away the aerosols and gases that slow down the rise of methane elsewhere, which enables methane erupting from the Arctic Ocean to rise straight up fast and reach the stratosphere.

The rise of methane at these high altitudes is very worrying. Once methane reaches the stratosphere, it can remain there for a long time. The IPCC in 2013 (AR5) gave methane a lifetime of 12.4 years. The IPCC in 2001 (TAR) gave stratospheric methane a lifetime of 120 years, adding that less than 7% of methane did reach the stratosphere. 

Further Feedbacks

Furthermore, the Siberian heatwave is also threatening to trigger forest fires that can cause huge amounts of emissions, including black carbon that can settle on the snow and ice cover, further speeding up its demise and causing albedo changes that result in a lot more heat getting absorbed in the Arctic, instead of getting reflected back into space as was previously the case. This is illustrated by the image below showing forest fires in East Siberia on June 19, 2020.


Finally, more intense forest fires threaten to cause organic carbon compounds to enter the stratosphere and damage the ozone layer, as discussed in an earlier post.

The situation is dire and calls for immediate, comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Very High Greenhouse Gas Levels
https://arctic-news.blogspot.com/2020/05/very-high-greenhouse-gas-levels.html

• April 2020 temperatures very high
https://arctic-news.blogspot.com/2020/05/april-2020-temperatures-very-high.html

• Methane Erupting From Arctic Ocean Seafloor
https://arctic-news.blogspot.com/2017/03/methane-erupting-from-arctic-ocean-seafloor.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Could Humans Go Extinct Within Years?
https://arctic-news.blogspot.com/2020/01/could-humans-go-extinct-within-years.html

• Fast Path to Extinction
https://arctic-news.blogspot.com/2020/06/fast-path-to-extinction.html

• Arctic records its hottest temperature ever
https://www.cbsnews.com/news/arctic-records-its-hottest-temperature-ever-2020-06-20/




Thursday, July 13, 2017

Wildfires

Levels of carbon dioxide (CO2) in the atmosphere are accelerating, even though emissions from fossil fuel burning have remained virtually the same over the past few years.

One of the reason behind this is accelerating emissions from wildfires as temperatures are rising.

Wildfires in Nevada caused CO2 to reach levels as high as 742 ppm on July 12, 2017 (green circle image on the right).

Global warming is greatly increasing the chance for what was previously seen as an extreme weather event to occur, such as a combination of droughts and storms. Heat waves and droughts can cause much vegetation to be in a bad condition, while high temperatures can come with strong winds, storms and lightning.

Wildfires cause a range of emissions, including CO2, soot, methane and carbon monoxide (CO). In Nevada, CO levels were as high as 30.43 ppm (green circle image right).


Above satellite image below shows the smoke plumes and the charred area. The google maps image below further shows where the fires were burning.


At the moment, wildfires are hitting many places around the world.

Wildfires caused carbon dioxide to reach levels as high as 746 ppm in Kazakhstan on July 11, 2017 (green circle on image on the right).

Carbon monoxide levels in the area were as high as 20.96 ppm on July 10, 2017.

The satellite image shows wildfires in Kazakhstan on July 9, 2017.


The satellite images show wildfires in Kazakhstan on July 11, 2017.


On July 16, 2017, CO₂ reached levels as high as 830 ppm in North America at the location marked by the green circle on the image below. Note that fires are burning at multiple locations.


The image below shows the location (red marker) where the fires burned in Canada.


That same day, July 16, 2017, CO₂ reached levels as high as 873 ppm in Mongolia, as shown by the image on the right.

The image also shows further fires burning in Siberia.

Carbon monoxide levels were as high as 37.19 ppm where the fires burned in Mongolia on July 16, 2017, as shown by the image below.


The image below shows the location (red marker) where the fires burned in Mongolia. The image also shows Lake Baikal across the border with Russia.


On July 22, 2017, CO₂ reached levels as high as 1229 ppm in Montana, while CO levels at the time were as high as 56.38 ppm at that location (green circle on image below).



The satellite image below shows the situation in Montana on the next day, July 23, 2017. See also the
NASA post Grassland Fires Tear Through Montana.


Furthermore, on July 23, 2017, CO₂ reached levels as high as 884 ppm at another (nearby) location in Montana (green circle on image below).


Meanwhile, temperatures keep rising. Surface temperature as high as 53.1°C or 127.5°F were forecast in Iran for July 11, 2017, at the location marked by the green circle on the image below.


At 1000 mb (image below), temperatures in Iran were forecast to be slightly lower, i.e. as high as 51.9°C or 125.3°F at the location marked by the at green circle, but note the difference in color, especially over Greenland, the Himalayas and the Tibetan Plateau.


The situation is dire and calls for comprehensive and effective action as described at the Climate Plan.

Aerosols

Some aerosols, particularly sulfur dioxide, have a cooling effect, making that they partly mask the warming effect of other emissions by people. The IPCC AR4 image below shows that the direct and cloud albedo effect of aerosols equals a radiative forcing of as much as -2.7 W/m². In other words, if this masking effect were to fall away, warming would increase by as much as 2.7 W/m², according to IPCC AR4 figures.
Anthropogenic aerosols are also suppressing the Pacific Decadal Oscillation, making that less heat gets transferred from oceans to the atmosphere. Recent research concludes that future reduction of anthropogenic aerosol emissions, particularly from China, would promote positive Pacific Decadal Oscillation, thus further speeding up warming over the coming years.

Dimethyl sulphide emissions from oceans constitute the largest natural source of atmospheric sulphur, and such emissions can decrease with ongoing ocean acidification and climate change. This could particularly impact specific regions such as Antarctica, speeding up warming and loss of sea ice there, as discussed at this paper.

The net warming effect of open biomass burning was estimated in a 2014 study by Mark Jacobson to amount to 0.4 W/m² of radiative forcing. Imagine a scenario in which many people stopped burning fossil fuels for heating, cooking and energy. That would be great, but if many of them instead switched to burning biomass in woodburners and open fires, while wildfires increased strongly, the net warming from associated aerosols would increase dramatically.

A recent paper by James Hansen uses equilibrium fast-feedback climate sensitivity of ¾°C per W/m², while another recent paper suggest that the temperature rise per W/m² could be even stronger.

A high-end increase in net radiative forcing combined with a strong temperature rise per W/m² could cause a temperature rise as a result of changes in aerosols of as much as 2.5°C in a matter of years, as suggested in earlier posts such as this one.



Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• 10°C or 18°F warmer by 2021?
https://arctic-news.blogspot.com/2017/04/10c-or-18f-warmer-by-2021.html

• Abrupt Warming - How Much And How Fast?
https://arctic-news.blogspot.com/2017/05/abrupt-warming-how-much-and-how-fast.html

• Accelerating growth in CO₂ levels in the atmosphere
https://arctic-news.blogspot.com/2017/02/accelerating-growth-in-co2-levels-in-the-atmosphere.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Turning forest waste into biochar
https://arctic-news.blogspot.com/2013/01/turning-forest-waste-into-biochar.html


Earlier posts on Wildfires

• Wildfires in Russia's Far East
https://arctic-news.blogspot.com/2016/08/wildfires-in-russias-far-east.html

• Wildfire Danger Increasing
https://arctic-news.blogspot.com/2016/05/wildfire-danger-increasing.html

• Smoke Blankets North America
https://arctic-news.blogspot.com/2014/07/smoke-blankets-north-america.html

• More on Wildfires
https://arctic-news.blogspot.com/2013/08/more-on-wildfires.html

• Wildfires even more damaging
https://arctic-news.blogspot.com/2013/07/wildfires-even-more-damaging.html

• Wildfires in Canada affect the Arctic
https://arctic-news.blogspot.com/2013/07/wildfires-in-canada-affect-the-arctic.html

• The Threat of Wildfires in the North
https://arctic-news.blogspot.com/2013/06/the-threat-of-wildfires-in-the-north.html

• Russia: 74 million acres burned through August 2012
https://arctic-news.blogspot.com/2012/09/russia-74-million-acres-burned-through-august-2012.html

• Earth on Fire
https://arctic-news.blogspot.com/2012/06/earth-on-fire.html

• Fires are raging again across Russia
https://arctic-news.blogspot.com/2012/06/fires-are-raging-again-across-russia.html


Further reading on wildfires and aerosols

• NASA: Grassland Fires Tear Through Montana
https://earthobservatory.nasa.gov/NaturalHazards/view.php?id=90622

• 2016 fire risk for South America
http://www.ess.uci.edu/~amazonfirerisk/ForecastWeb/SAMFSS2016.html

• Global Fire Data - 2015 Indonesian fires
http://www.globalfiredata.org/updates.html#2015_indonesia

• Indonesia’s Fire Outbreaks Producing More Daily Emissions than Entire US Economy (2015)
http://www.wri.org/blog/2015/10/indonesia%E2%80%99s-fire-outbreaks-producing-more-daily-emissions-entire-us-economy

• Indonesia’s 2015 fires killed 100,000 people, study finds
http://www.climatechangenews.com/2016/09/19/indonesias-2015-fires-killed-100000-people-study-finds

• Smoke from 2015 Indonesian fires may have caused 100,000 premature deaths
https://www.seas.harvard.edu/news/2016/09/smoke-from-2015-indonesian-fires-may-have-caused-100000-premature-deaths

• Impact of anthropogenic climate change on wildfire across western US forests, by Abatzoglou et al.
http://www.pnas.org/content/113/42/11770.abstract

• The Mean and Turbulent Properties of A Wildfire Convective Plume, by Lareau et al.
http://journals.ametsoc.org/doi/10.1175/JAMC-D-16-0384.1

• Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, by Liu et al.
http://onlinelibrary.wiley.com/doi/10.1002/2016JD026315/abstract

• Hemispheric climate shifts driven byanthropogenic aerosol–cloud interactions, by Chung et al.
http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2988.html

• Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects, by Mark Z. Jacobson
http://onlinelibrary.wiley.com/doi/10.1002/2014JD021861/abstract

• Amplification of global warming through pH-dependence of DMS-production simulated with a fully coupled Earth system model, by Jörg Schwinger et al.
https://www.biogeosciences-discuss.net/bg-2017-33

• Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown, by Doug M. Smith et al.
http://www.nature.com/nclimate/journal/v6/n10/full/nclimate3058.html

• Slow climate mode reconciles historical and model-based estimates of climate sensitivity, by Proistosescu et al.
http://advances.sciencemag.org/content/3/7/e1602821.full

• Young People’s Burden: Requirement of Negative CO2 Emissions, by James Hansen
http://csas.ei.columbia.edu/2017/07/18/young-peoples-burden-requirement-of-negative-co2-emissions






Monday, March 13, 2017

Methane Erupting From Arctic Ocean Seafloor

Seafloor methane often missed in measurements

Large amounts of methane are erupting from the seafloor of the Arctic Ocean. These methane eruptions are often missed by measuring stations, because these stations are located on land, while measurements are typically taken at low altitude, thus missing the methane that rises in plumes from the Arctic Ocean. By the time the methane reaches the coast, it has typically risen to higher altitudes, thus not showing up in low-altitude measurements taken at stations on land.

The image below shows the highest mean global methane levels on March 10 over the years from 2013 through 2017, for selected altitudes corresponding to 945 mb (close to sea level) to 74 mb.


The table below shows the altitude equivalents in feet (ft), meter (m) and millibar (mb).
57,016 ft44,690 ft36,850 ft30,570 ft25,544 ft19,820 ft14,385 ft 8,368 ft1,916 ft
17,378 m13,621 m11,232 m 9,318 m 7,786 m 6,041 m 4,384 m 2,551 m 584 m
 74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb

The signature of seafloor methane

Above image shows that, over the years, methane levels have risen strongly high in the Troposphere, up into the Stratosphere. This looks like the signature of methane that originated from the seafloor of the Arctic Ocean. The image below further explains why.


The Tropopause separates the Troposphere from the Stratosphere. The Troposphere ends at a height of some 9 km (5.6 mi; 30,000 ft) at the poles, and at a height of some 17 km (11 mi; 56,000 ft) at the Equator.

As said, methane is erupting from the seafloor of the Arctic Ocean concentrated in plumes, unlike methane from wetlands and agriculture that is typically emitted over a wide area. Since seafloor methane is rising in plumes, it hardly shows up on satellite images at lower altitude either, as the methane is very concentrated inside the area of the plume, while little or no increase in methane levels is taking place outside the plume. Since the plume will cover less than half the area of one pixel, such a plume doesn't show up well at low altitudes on satellite images,

Methane over the Arctic typically does show up on satellite images at altitudes between 4.4 km and 6 km (14,400 ft and 19,800 ft). Seafloor methane will show up better at these higher altitudes where it spreads out over larger areas. At even higher altitudes, methane will then follow the Tropopause, i.e. the methane will rise in altitude while moving closer to the equator.

NOAA image

In conclusion, methane originating from the seafloor of the Arctic Ocean can strongly contribute to high methane levels that show up over the Equator at higher altitudes, but this methane can be misinterpreted for methane originating from tropical wetlands.

Methane levels as high as 2846 ppb
[ click on images to enlarge ]

On March 14, 2017, methane levels were as high as 2846 ppb, as illustrated by the image on the right. While the origin of these high levels looks hard to determine from this image, the high levels showing up over the East Siberian Arctic Shelf (ESAS) later that day (image underneath) give an ominous warning that destabilization of methane hydrates is taking place.

The images also show that high methane levels are showing up at many other places, e.g. over Antarctica where hydrate destabilization also appears to be taking place, which could also be the cause of noctilucent clouds as discussed in earlier posts (see links at end of this post).

Why is methane erupting from the Arctic Ocean?

Why are increasingly large quantities of methane erupting from the seafloor of the Arctic Ocean? The main driver is warming of the Arctic Ocean that is destabilizing once-permanently-frozen sediments that contain huge amounts of methane in the form of hydrates and free gas.

Ocean heat is increasingly entering the Arctic Ocean from the Atlantic Ocean, as illustrated by the images below. Self-reinforcing feedbacks, in particular sea ice decline, further speed up warming of the Arctic Ocean.

[ from earlier post ]

[ from earlier post ]
Self-reinforcing feedback loops

[ click on images to enlarge ]
Meanwhile, the next El Niño event has already started, at a time when sea surface temperature anomalies over the Pacific Ocean are very high as illustrated by the image on the right showing sea surface temperature anomalies east of South America as high as 5.3°C or 9.5°F (compared to 1981-2011) on February 28, 2017.

Greater contrast between sea surface temperatures and temperatures on land has contributed to flooding in California and South America.

Importantly, more water vapor in the atmosphere results in more warming, since water vapor is a potent greenhouse gas.

[ click on images to enlarge ]
Above images shows ECMWF (European Centre for Medium-Range Weather Forecasts) plumes with strong positive anomalies in all three El Niño regions (on the right).

In other words, temperatures in 2017 look set to be very high, which spells bad news for the Arctic where temperature anomalies are already several times higher than in the rest of the world.

Arctic sea ice looks set to take a steep fall, as illustrated by the image below.


The danger is that further self-reinforcing feedback loops such as albedo decline and methane releases will accelerate warming and, in combination with further warming elements, cause a temperature rise as high as 10°C or 18°F by the year 2026, as described at the extinction page.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• Warning of mass extinction of species, including humans, within one decade
http://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Low sea ice extent contributes to high methane levels at both poles
http://arctic-news.blogspot.com/2017/03/low-sea-ice-extent-contributes-to-high-methane-levels-at-both-poles.html

• Noctilucent clouds indicate more methane in upper atmosphere
http://arctic-news.blogspot.com/2012/09/noctilucent-clouds-indicate-more-methane-in-upper-atmosphere.html

• Noctilucent clouds: further confirmation of large methane releases
http://methane-hydrates.blogspot.com/2013/12/noctilucent-clouds-further-confirmation-of-large-methane-releases.html



Thursday, February 18, 2016

Has maximum sea ice extent already been reached this year?

An earlier post wondered whether maximum extent for this year had already been reached, i.e. on February 9, 2016, when sea ice extent was 14.214 million km2.

As illustrated by the image below, extent since has been lower, including on the two most recent days on the image, i.e. on February 16 and 17, 2016, when extent was respectively 14.208 and 14.203 million km2.



Last year (2015), maximum sea ice extent was reached on February 25. That's close to the most recent date on the image of February 17, so with El Nino still going strong, it may well be that the maximum in 2016 will be reached early.

On the other hand, strong winds could spread out the sea ice and speed up its drift out of the Arctic Ocean, which may result in a larger extent, but which won't do much to strengthen the sea ice.

UPDATES: On February 18, 2016 (arrow), Arctic sea ice extent was 14.186 million square km, i.e. less than it was on February 9. In fact, sea ice extent hasn't been higher on any day since February 9, 2016. So, the question is, has this year's maximum extent already passed us by (i.e. on February 9)?

The image below shows the heat is having a huge impact on the sea ice, with some areas (black) showing sea surface temperature anomalies above 8°C (or above 14.4°F).


Ominously, sea surface off the North American east coast was as much as 11.8°C or 21.3°F warmer on February 19, 2016, than it was in 1981-2011 (at the location marked by the green circle in the image below).


Temperatures over the Arctic Ocean are forecast to remain extremely high for the next five days, with anomalies in a large part of the Arctic Ocean at the top end of the scale, i.e. 20°C or 36°F.


As the image below shows, Arctic sea ice area was at a record low for the time of year on February 18, 2016.



The image below shows that Arctic sea ice extent on February 20, 2016, was only 14.166
million km2 (arrow), adding to fears that this year's maximum was already reached on February 9.


The image below shows that Arctic sea ice extent on February 21, 2016, was only 14.160
million km2 (arrow), further fueling fears that this year's maximum was already reached on February 9.


Meanwhile, very high methane levels, as high as 3096 parts per billion, were recorded on February 20, 2016, as shown by the image below.


Further analysis indicates that these high levels likely originated from destabilizing methane hydrates in sediments, from a location about latitude 85°North and longitude +105° (East), on the Gakkel Ridge, just outside the East Siberian Arctic Shelf, at the location of the red marker on the map below.

Below is a comparison map, from grida.no
for large-size image, go to grida.no
Below is a map with sea surface temperature anomalies on February 20, 2016. The green circle marks the likely location of sediment destabilization and subsequent methane plume, at about latitude 85°North and longitude +105° (East), on the Gakkel Ridge, just outside the East Siberian Arctic Shelf.

zoom in and out at nullschool.net
If you like, you can discuss this further at the Arctic News group or below.


On February 18, 2016 (arrow), Arctic sea ice extent was 14.186 million square km, i.e. less than it was on February 9....
Posted by Sam Carana on Friday, February 19, 2016