Showing posts with label tipping points. Show all posts
Showing posts with label tipping points. Show all posts

Friday, June 21, 2019

Beyond climate tipping points

Beyond climate tipping points
Greenhouse gas levels exceed the stability limit of the
Greenland and Antarctic ice sheets

by Andrew Glikson

Abstract

The pace of global warming has been grossly underestimated. As the world keeps increasing its carbon dioxide (CO₂) emissions, rising in 2018 to a record 33.1 billion ton of CO₂ per year, the atmospheric greenhouse gas level has now exceeded 560 ppm (parts per million) CO-equivalent, namely when methane and nitrous oxide are included. This level surpasses the stability threshold of the Greenland and Antarctic ice sheets. The term “climate change” is thus no longer appropriate, since what is happening in the atmosphere-ocean system, accelerating over the last 70 years or so, is an abrupt calamity on a geological dimension, threatening nature and human civilization. Ignoring what the science says, the powers-that-be are presiding over the sixth mass extinction of species, including humanity.

As conveyed by leading scientists “Climate change is now reaching the end-game, where very soon humanity must choose between taking unprecedented action, or accepting that it has been left too late and bear the consequences” (Prof. Hans Joachim Schellnhuber) ... “We’ve reached a point where we have a crisis, an emergency, but people don’t know that ... There’s a big gap between what’s understood about global warming by the scientific community and what is known by the public and policymakers” (Prof. James Hansen).


Rising greenhouse gases and temperatures

By May 2019 CO₂ levels (measured at Mauna Loa, Hawaii) reached 414.66 ppm, growing at a rate of 3.42 ppm/year, well above the highest rate recorded for the last 65 million years. The total CO, methane (CH) and nitrous oxide (NO) expressed as CO-equivalents has reached at least 560.3 ppm (Table 1) (at a very low forcing value for methane ¹), the highest concentration since 34 - 23 Million years ago, when atmospheric CO ranged between 350 and 500 ppm.

Table 1. Total atmospheric CO2e from CO2, CH4 and N2O
CO2
CO2 rate
CH4
CH4 rate
N2O
414.66 ppm 
3.42 ppm/year
1865.4 ppb
9.2 ppm/year
332ppb
CO2 ppm 
rise/year
CH4 forcing ≥25 CO2e
CH4 ppb
rise/year
N2O forcing = 298 CO2e
CO2 ppm 
414.7

CH4 ppm forcing
1.865 x ≥25 =
46.6 ppm CO2e 
(equivalent)

N2O ppm forcing
0.332 x 298 =
99 ppm CO2e 
(equivalent)

Total CO2e: 414.7+46.6+99 = >560.3 ppm CO2
¹A methane forcing value of 25 x CO2 is very low. Higher forcing values are more appropriate.
Plus: SF₆, CHF3, CH2F2, CF4, C2F6, C3F8, C4F10, C4F8, C5F12, C6F1


Figure 1. Projected CO₂ levels for IPCC emission scenarios

The current rise of the total greenhouse gas levels to at least 560 ppm CO-equivalent, twice the pre-industrial CO2 level of 280 ppm, implies that global warming has potentially reached +2°C to +3°C above pre-industral temperature. Considering the mitigating albedo/reflection effects of atmospheric aerosols, including sulphur dioxide, dust, nitrate and organic carbon, the mean rise of land temperature exceeds +1.5°C (Berkeley Earth institute).

The threshold for collapse of the Greenland ice sheet is estimated in the range of 400-560 ppm CO₂ at approximately 2.0 - 2.5 degrees Celsius above pre-industrial temperatures, and is retarded by hysteresis (where a physical property lags behind changes in the effect causing it). The threshold for the breakdown of the West Antarctic ice sheet is similar. The greenhouse gas level and temperature conditions under which the East Antarctic ice sheet formed about 34 million years ago are estimated as ~800–2000 ppm at 4 to 6 degrees Celsius above pre-industrial values. Based mainly on satellite gravity data there is evidence the East Antarctic ice sheet is beginning to melt in places (Jones, 2019), with ice loss rates of approximately 40 Gt/y (Gigaton of ice per year) in 1979–1990 and up to to 252 Gt/y in 2009–2017 (Rignot et al., 2019).

The cumulative contribution to sea-level rise from Antarctic ice melt was 14.0 ± 2.0 mm since 1979. This includes 6.9 ± 0.6 mm from West Antarctica, 4.4 ± 0.9 mm from East Antarctica, and 2.5 ± 0.4 mm from the Antarctic Peninsula (Rignot et al., 2019). Based on the above the current CO-equivalent level of at least 560 ppm closely correlates with the temperature peak at ~16 million tears ago (Figures 2 and 5), when the Greenland ice sheet did not exist and large variations affected the Antarctic ice sheet (Gasson et al., 2016).

Figure 2. Updated Cenozoic pCO₂ and stacked deep-sea benthic foraminifer oxygen isotope curve for 0 to
65 Ma (Zachos et al., 2008) converted to the Gradstein timescale (Gradstein et al., 2004).
ETM2 = Eocene Thermal Maximum 2, PETM = Paleocene/Eocene Thermal Maximum.

Transient melt events

As the glacial sheets disintegrate, cold ice-melt water flowing into the ocean ensue in large cold water pools, a pattern recorded through the glacial-interglacial cycles of the last 450,000 years, manifested by the growth of cold regions in the north Atlantic Ocean south of Greenland and in the Southern Ocean fringing Antarctica (Figures 3 and 4). The warming of the Arctic is driven by the ice-water albedo flip (where dark sea-water absorbing solar energy alternate with high-albedo ice and snow) and by the weakening of the polar boundary and jet stream. Penetration of Arctic-derived cold air masses through the weakened boundary results in extreme weather events in North America, Europe and northern Asia, such as the Beast from the East event.

Warming of +3°C to +4°C above pre-industrial levels, leading to enhanced ice-sheet melt, would raise sea levels by 2 to 5 meters toward the end of the century, and likely by 25 meters in the longer term. Golledge et al. (2019) show meltwater from Greenland will lead to substantial slowing of the Atlantic overturning circulation, while meltwater from Antarctica will trap warm water below the sea surface, increasing Antarctic ice loss. The effects of ice sheet-melt waters on the oceans were hardly included in IPCC models. Depending on the amplifying feedbacks, prolonged Greenland and Antarctic melting (Figures 3 and 4) and a consequent freeze event may ensue, lasting perhaps as long as two to three centuries.


Figure 3. (A) Global warming map (NASA 2018). Note the cool ocean regions south of Greenland
and along the Antarctic. Credits: Scientific Visualization Studio/Goddard Space Flight Center;
(B) 2012 Ocean temperatures around Antarctica, (NASA 2012).

21st–23rd centuries uncharted climate territory

Modelling of climate trends for the 2100-2300 by the IPCC AR5 Synthesis Report, 2014 portrays predominantly linear models of greenhouse gas rise, global temperatures and sea levels. These models however appear to take little account of amplifying feedbacks from land and ocean and of the effects of cold ice-melt water on the oceans. According to Steffen et al. (2018) “self-reinforcing feedbacks could push the Earth System toward a planetary threshold” and “would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene”.

Amplifying feedbacks of global warming include:
  • The albedo-flip in melting sea ice and ice sheets and the increase of the water surface area and thereby the sequestration of CO₂. Hudson (2011) estimates a rise in radiative forcing due to removal of Arctic summer sea ice of 0.7 Watt/m², a value close to the total of methane release since 1750.
  • Reduced ocean CO₂ intake due to lesser solubility of the gas with higher temperatures.
  • Vegetation desiccation and loss in some regions, and thereby reduced evaporation with its cooling effect. This factor and the increase of precipitation in other regions lead to a differential feedbacks from vegetation as the globe warms (Notaro et al. 2007).
  • An increase in wildfires, releasing greenhouse gases.
  • Release of methane from permafrost, bogs and sediments and other factors.
Linear temperature models do not appear to take into account the effects on the oceans of ice melt water derived from the large ice sheets, including the possibility of a major stadial event such as already started in oceanic tracts fringing Greenland and Antarctica (Figure 3). In the shorter term sea level rises include the Greenland ice sheet (6-7 meter sea level rise) and West Antarctic ice sheet melt (4.8 meter sea level rise). Referring to major past stadial events, including the 8200 years-old Laurentian melt event and the 12.7-11.9 younger dryas event, a prolonged breakdown of parts of the Antarctic ice sheet could result in major sea level rise and extensive cooling of northern and southern latitudes, parallel with warming of tropical and mid-latitudes (Figure 4) (Hansen et al., 2016). The clashes between polar-derived cold weather fronts and tropical air masses are bound to lead to extreme weather events, echoed in Storms of my grandchildren (Hansen, 2010).

Figure 4. Model Surface-air temperature (°C) for 2096 relative to 1880–1920 (Hansen et al. 2016).
The projection portrays major cooling of the North Atlantic Ocean, cooling of the circum-Antarctic Ocean 

and further warming in the tropics, subtropics and the interior of continents, including Siberia and Canada.

Summary and conclusions
  1. Global greenhouse gases have reached a level exceeding the stability threshold of the Greenland and Antarctic ice sheets, melting at an accelerated rate
  2. The current growth rate of atmospheric greenhouse gas of 3.42 ppm CO₂/year is the fastest recorded for the last 55 million years
  3. Allowing for the transient albedo enhancing effects of sulphur dioxide and other aerosols, mean global temperature has reached about 2 degrees Celsius above pre-industrial temperatures. 
  4. Due to hysteresis the large ice sheets outlast their melting temperatures. 
  5. Cold ice melt water flowing from the ice sheets at an accelerated rate will reduce the temperature of large ocean tracts in the North Atlantic and circum-Antarctic. Strong temperature contrasts between cold polar-derived air and water masses and tropical air and water masses would result in extreme weather events, retarding agriculture in large parts of the world. 
  6. Humans will survive in relatively favorable parts of Earth, such as sub-polar regions and sheltered mountain valleys, where hunting of surviving fauna may be possible.
  7. In the wake of partial melting of the large ice sheets, the Earth climate would shift to polarized conditions including reduced polar ice sheets and tropical to super-tropical regions such as existed in the Miocene (5.3 - 23 million years ago) (Figure 5). 
Figure 5. Late Oligocene–Miocene inferred atmospheric CO2 fluctuations and effects on global temperature
based on Stromata index (SI) of 25 and 12 Ma (late Oligocene to late middle Miocene) fossil leaf remains;
(A) Reconstructed late Oligocene–middle Miocene CO2 levels based on individual independently
calibrated tree species; (B) Modeled temperature departure of global mean surface temperature from
present day, calculated from mean CO2 estimates by using a CO2–temperature sensitivity study. Red
discontinuous lines: 2019 CO2-e levels and 2019 temperatures (discounting the aerosol masking effects).
Current greenhouse gas forcing and global mean temperature are approaching Miocene Optimum-like composition, bar the hysteresis effects of reduced ice sheets (Figure 5). Strong temperature polarities are suggested by the contrasts between reduced Antarctic ice sheet and super-tropical conditions in low to mid-latitudes. Land areas would be markedly reduced due to a sea level rise of approximately 40 ± 15 meters.
Andrew Glikson


Dr Andrew Glikson
Earth and climate scientist
Australian National University
Canberra, Australian Territory, Australia
geospec@iinet.net.au

Books:
The Archaean: Geological and Geochemical Windows into the Early Earth
The Asteroid Impact Connection of Planetary Evolution
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence

From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence

The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth

Added below is a video with an August 6, 2019, interview of Andrew Glikson by Guy McPherson and Kevin Hester, as edited by Tim Bob.





Monday, April 8, 2019

Blue Ocean Event Consequences

A Blue Ocean Event looks set to occur in the Arctic when there will be virtually no sea ice left. At first, the duration of this event will be a few weeks in September, but as more heat accumulates in the Arctic, the event will last longer each year thereafter.

Indeed, a Blue Ocean Event will come with accumulation of more heat, due to loss of latent heat, as a dark (blue) ocean absorbs more sunlight than the reflective ice, etc. Consequences will extend far beyond the Arctic, as shown on the image below that features Dave Borlace's Blue Ocean Top Ten Consequences.


Dave Borlace goes into more detail regarding these consequences in the video Blue Ocean Event : Game Over?


A Blue Ocean Event could happen as early as September 2019. The image below shows that Arctic sea ice extent on April 7, 2019, was 12.97 million km², a record low for measurements at ads.nipr.ac.jp for the time of year. By comparison, on May 28, 1985, extent was larger (13.05 million km²) while it was 51 days later in the year.


In the video below, Paul Beckwith also discusses the rapid decline of the sea ice and the consequences.


Clearly, the rapid decline of the sea ice has grave consequences. When also looking beyond what's happening in the Arctic, there are further events, tipping points and feedbacks that make things worse. An earlier post contains the following rapid warming scenario:
  1. a stronger-than-expected El Niño would contribute to
  2. early demise of the Arctic sea ice, i.e. latent heat tipping point +
  3. associated loss of sea ice albedo, 
  4. destabilization of seafloor methane hydrates, causing eruption of vast amounts of methane that further speed up Arctic warming and cause
  5. terrestrial permafrost to melt as well, resulting in even more emissions,
  6. while the Jet Stream gets even more deformed, resulting in more extreme weather events
  7. causing forest fires, at first in Siberia and Canada and
  8. eventually also in the peat fields and tropical rain forests of the Amazon, in Africa and South-east Asia, resulting in
  9. rapid melting on the Himalayas, temporarily causing huge flooding,
  10. followed by drought, famine, heat waves and mass starvation, and
  11. collapse of the Greenland Ice Sheet.


Importantly, depicted above is only one scenario out of many. Things may eventuate in different order and occur simultaneously, i.e. instead of one domino tipping over the next one sequentially, many events reinforcing each other. Further points should be added to the list, such as falling away of sulfate cooling due to economic changes, ocean stratification and stronger storms that can push large amounts of warm salty water into the Arctic Ocean.

Global sea ice extent is also at a record low for the time of year. Global sea ice extent on April 8, 2019, was 17.9 million km². On April 8, 1982, global sea ice extent was 22.32 million km², i.e. a difference of 4.42 million km². That constitutes a huge albedo loss.


As discussed in an earlier post, this all adds up to further global warming that may eventuate very rapidly. The image below shows how a total rise of 18°C or 32.4°F from preindustrial could eventuate by 2026.



The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Blue Ocean Event : Game Over? - by Dave Borlace
https://www.youtube.com/watch?v=qo3cznpfIpA

• Climate System Upheaval: Arctic Sea-Ice, Snow Cover, Jet-Stream, Monsoonal Consequences - by Paul Beckwith
https://www.youtube.com/watch?v=ZtpF--rqZZ8

• Jet Stream Center-of-Rotation to Shift 17 degrees Southward from North Pole to Greenland with Arctic Blue Ocean Event - by Paul Beckwith
https://www.youtube.com/watch?v=bFme3C9e-cs

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Stronger Extinction Alert
https://arctic-news.blogspot.com/2019/03/stronger-extinction-alert.html

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Albedo and more
https://arctic-news.blogspot.com/p/albedo.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html


Saturday, March 23, 2019

Climate Tipping Points

Paleoclimate perspectives of 21st-23rd centuries, IPCC projections and tipping points

by Andrew Glikson
Earth and paleo-climate scientist
Australian National University

Abstract

IPCC models of future climate trends contain a number of departures from patterns deduced from the paleoclimate evidence. With CO₂ levels reaching 411.8 ppm in January 2019 and CH₄ levels reaching 1.867 ppm in October 2018, for a greenhouse radiative forcing factor of CH₄=25 CO₂ equivalents, the total CO₂-equivalent of 457.5 ppm¹ approaches the stability limit of the Greenland ice sheet, estimated at a greenhouse gas forcing of approximately 500 ppm CO₂ although ephemeral ice may have existed as far back as the middle Eocene. As the concentration of greenhouse gases is rising and amplifying feedbacks from land, oceans and ice sheet melting increase, transient temperature reversals (stadials) accentuate temperature polarities between warming land masses and oceanic regions cooled by the flow of cold ice melt water from the ice sheets, leading to extreme weather events. The rise in Arctic temperatures, at a rate twice as fast as that of lower latitudes, weakens the polar boundary and results in undulation of the jet stream, allowing warm air masses to shift north across the boundary, further heating the polar region. The weakened boundary further allows cold air masses to breach the boundary shifting away from the Arctic. Combined with the flow of ice melt water from Greenland, these developments are leading to a cooling of sub-polar oceans and adjacent land. Similar growth of cold water pools occur along the fringes of Western Antarctica. The cold water pools cover deeper warmer salt water layers which melt the frontal glaciers. The slow-down of the AMOC is analogous to Pleistocene (2.6-0.01 Ma) and early Holocene stadial freeze events such as the Younger Dryas (12.9 – 11.7 kyr) and the 8.5 kyr Laurentide ice melt, where peak temperatures were followed closely by sharp cooling. Climate projections by Hansen et al. (2016) suggest a stadial event associated with significant sea level rise and involving sharp cooling of approximately -2°C, lasting several decades between the mid-21 st century and the mid-22nd century, a time dependent on the rate of Greenland and Antarctic ice melt. Accelerating ice melt and nonlinear sea level rise would reach multi-meters levels over a timescale of 50–150 years.

___________________
¹ January 2019: CO₂ = 410.8 ppm https://www.esrl.noaa.gov/gmd/ccgg/trends/ ; October 2018: CH₄ 1.8676 ppm (CO₂ equivalent x25 = 46.7 CO₂e) https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/

Paleoclimate records

Pleistocene paleo-climate records are marked by abrupt warming and cooling events during both glacial periods (Dansgaard-Oeschger (D-O) cycles; Ganopolski and Rahmstorf 2001; Camille and Born, 2019) and stadial interglacial periods, the latter defined as stadial freeze events (Figure 1). The paleo-climate record indicates that during the last ~450,000 years peak interglacial temperatures were repeatedly succeeded by temporary freeze events, attributed to the flow of cold ice melt water flow into the North Atlantic Ocean (Cortese et al. 2007) (Figure 1), associated with rapid rises in sea level, as during the last glacial termination (Figure 2). The rise in extreme weather events associated with current global warming to ~0.9°C above 1884 level (NASA, 2018) compares with temperatures and extreme weather events associated with the early Holocene Period (~11.6 –7.0 kyr), a period of major sea level rise of ~60 meters (Smith et al. 2011) and with the Eemian interglacial (128-116 kyr). During the Eemian tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically, as evidenced by large boulders transported by waves generated by intense storms and cliff erosion (Roverea et al. 2017). Sea levels during the Eemian, when temperatures were about +1°C or and sea levels were +6 to +9 m higher than during the late Holocene, offer analogies with current developments (Roverea A et al. 2017; Kaspar et al. 2007).

Figure 1. (A) Evolution of sea surface temperatures in 5 glacial-interglacial transitions recorded in ODP
1089 at the sub-Antarctic Atlantic Ocean. Lower grey lines – δ¹⁸O measured on Cibicidoides plankton;
Black lines – sea surface temperature. Marine isotope stage numbers are indicated on top of diagrams.
Note the stadial temperature drop events following interglacial peak temperatures, analogous
to the Younger Dryas preceding the onset of the Holocene (Cortese et al. 2007⁽²⁵⁾).
(B) Mean temperatures for the late Pleistocene and early Holocene.

With CO₂ levels reaching 411.8 ppm in January 2019 and CH₄ reaching 1.867 ppm in October 2018, for a greenhouse radiative forcing factor of CH₄=25 CO₂e, the total CO₂-equivalent of 457.5 ppm¹ approaches Miocene levels (Gasson et al. 2016). Levy et al. (2016), Tripati and Darby (2018) and other considered the implications of the rise of greenhouse levels above about 500 ppm CO₂ for the future of the Greenland ice sheet. Whereas due to hysteresis² of the ice sheets may delay complete melting, the extreme rate of warming (Figure 3) may in part override this effect.

Anthropocene tipping points

During the late Anthropocene³, accelerating since about 1960, the rise of radiative forcing due mainly to increasing greenhouse gas concentration above >457 ppm CO₂-equivalent, accounts for a rise of mean global temperatures by 0.98°C since 1880 (NASA (2018) A further rise by more than >0.5°C is masked by aerosols, mainly sulphur dioxide and sulfuric acid (Hansen et al., 2011).

The temperature rise is potentially further enhanced by amplifying feedbacks from land and oceans, including infrared absorption by water surfaces following sea ice melting, reduction of CO₂ concentration in warming water, release of methane and fires. However, climate change trajectories are likely to be highly irregular as a result of stadial ocean cooling events affected by flow of ice melt. Whereas similar temperature fluctuations including stadial events have occurred during past interglacial periods (Cortese et al. 2007; figure 1), with a further rise in atmospheric greenhouse gases the intensity and frequency of extreme weather events would enter uncharted territory unlike any recorded during the Pleistocene, potentially rendering large parts of the continents uninhabitable (Wallace-Wells, 2019).

Figure 2. Tipping points in the Earth system (Lenton et al., 2008)
https://www.pik-potsdam.de/services/infodesk/tipping-elements/kippelemente
Creative Commons BY-ND 3.0 DE license.

Expressions of climate tipping points include intensifying climate feedbacks such ice sheet and sea ice melting, declining Atlantic circulation, intensifying monsoons, increasing El-Nino events, heatwaves and fires, rainforest dieback, melting permafrost and breakdown of methane clathrates (Figure 2) (Lenton et al., 2008). According to the Potsdam Climate Impacts Institute (PIK), tipping points include transformation of the Amazon Rainforest, retreat of the Northern Boreal Forests, destruction of Coral Reefs and weakening of the Marine Carbon Pump, melting of the Arctic Sea Ice, loss of the Greenland Ice Sheet, collapse of the West Antarctic Ice Sheet, partial Collapse in East Antarctica, melting of the Yedoma Permafrost and methane Emissions from the Ocean (Schellnhuber, 2009).

Figure 3. Atmospheric carbon dioxide rise rates and global warming events: a comparison between current
global warming, the Paleocene-Eocene Thermal Event (PETM) and the last Glacial Termination. 

The rate at which atmospheric greenhouse gases and temperatures are rising exceeds global warming rates of the PETM and of last glacial termination and is the fastest recorded in Cenozoic record, excepting that associated with asteroid impacts (Figure 3). Ice mass loss would raise sea level by several meters in an exponential rather than linear response, with doubling time of ice loss yielding multi-meter sea level rise. Modelled 2055-2100 AIB model forcing of +1.19°C above 1880-1920 leads to a projected global warming trend which includes a transient drop in temperature, reflecting stadial freezing events in the Atlantic Ocean and the sub-Antarctic Ocean, reaching -2°C over several decades (Figure 7) (Hansen et al., 2016). These authors used paleoclimate data and modern observations to estimate the effects of ice melt water from Greenland and Antarctica, showing cold low-density meltwater tends to cap increasingly warm subsurface ocean water, affecting an increase ice shelf melting. This affects acceleration of ice sheet mass loss (Figure 4) and slowing of deep water formation (Figure 5).

Figure 4. Greenland and Antarctic ice mass change. GRACE data are extension of Velicogna et al. (2014)
gravity data. MBM (mass budget method) data are from Rignot et al. (2011). Red curves are gravity data for
Greenland and Antarctica only; small Arctic ice caps and ice shelf melt add to freshwater input. (Hansen et al. 2016)
Figure 5. (a) AMOC (in Sverdrup) at 28°N in simulations (i.e., including freshwater injection of 720 Gt year⁻¹ in 2011
                around Antarctica, increasing with a 10-year doubling time, and half that amount around Greenland).
(b) SST (°C) in the North Atlantic region (44–60°N, 10–50°W).

Future trends and Tipping points

Whereas the precise nature tipping point/s ensuing from the confluence of numerous processes (Figure 2) remains little defined, the weakened boundaries between the Arctic and sub-Arctic zones (Figure 7) and the build-up of cold ice melt pools in the oceans fringing Greenland and Antarctica represent an initial stage in the development of a stadial freeze. The warming of the Arctic, formed approximately 3.6-2.2 million years ago when CO₂ levels were about 400 ppm and polar temperatures near 2°C higher than in the late Holocene, heralds conditions somewhat similar to those of the Pliocene. Whereas reports of the International Panel of Climate Change (IPCC, 2018) (Figure 9), based on thousands of peer reviewed science papers and reports, offer a confident documentation of past and present processes in the atmosphere (Climate Council 2018), the portrayal of mostly linear temperature rise trends need to be questioned. Already early stages of a stadial event are manifest by the build-up of a large pools of cold water in the North Atlantic Ocean south of Greenland (Figure 6A) (Rahmstorf et al., 2015) and at the fringe of West Antarctica (Figure 6A) signify early stages in the development of a stadial freeze in large parts of the oceans, consistent with the decline in the Atlantic Meridional Ocean Circulation (AMOC) (Figure 6A).

Figure 6. (A) 2018 global temperature (NASA);
(B) projected 2055-2100 surface-air temperature to +1.19°C above 1880-1920
(AIB model modified forcing, ice melt to 1 meter) (Hansen et al., 2016).
These projections differ markedly from linear model trends (Figure 9) of IPCC models, which mainly assume long term ice melt (Ahmed, 2018). Rignot et al. (2011) report that in 2006 the Greenland and Antarctic ice sheets experienced a combined mass loss of 475 ± 158 Gt/yr, equivalent to 1.3 ± 0.4 mm/yr sea level rise”. For the Antarctic ice sheet the IEMB team (2017) states the sheet lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimeter (IMBIE team 2017). Hansen et al. (2008) consider global temperature higher than 1.0°Celsius due to CO₂ level of ~450 ppm would lead to irreversible ice sheet loss, given most climate models did not include amplifying feedbacks effects such as ice sheet disintegration, vegetation migration, and greenhouse gas release from soils, tundra, or ocean sediments. Such feedbacks can lead to climate tipping points leading to irreversible runaway climate change (Ahmed, 2018).

Figure 7. Global surface-air temperature to the year 2300 in the North Atlantic and Southern Oceans,
including stadial freeze events as a function of Greenland and Antarctic ice melt doubling time (Hansen et al., 2018)

According to NOAA (2018) Arctic surface air temperatures continue to warm at twice the rate relative to the rest of the globe (Figure 8B), leading to a loss of 95 percent of its oldest ice over the past three decades. Arctic air temperatures for 2014-18 have exceeded all previous records since 1900 and are driving broad changes within the Arctic as well he sub-Arctic through weakening of the jet stream which separates the Arctic from warmer climate zones. The recent freezing storms in North America represent penetration of cold air masses through a weakening and increasingly undulating jet stream barrier (Figure 8A). This weakening also allows warm air masses to move northward, further warming the Arctic and driving further ice melting. The freezing storms in North America (Figure 8C) are cheering those who refuse to discriminate between the climate and the weather.

Figure 8. – A. The weakened undulating Jet stream bounding the polar vortex.
Red represents the fastest air flow (Berwyn 2016). The "big freeze" in North America
results from a slow-moving depression of a Rossby wave⁵. The troughs and ridges of
these waves carry wind around the world and generally have a speed rating
of six or seven, with higher numbers representing faster moving winds;
B. The North American and Siberian freeze event 30 January 2019 (NOAA Global
Forecast system model) (Francis 2019). Predicted near-surface air temperature
differences from normal, relative to 1981-2010. Pivotal Weather, CC BY-ND (Francis 2019);
C. North America is experiencing the weather pattern on the left, while Europe enjoys the other one.

IPCC models of future climate change (Figure 9) contain a number of departures from patterns deduced from the paleoclimate evidence. The role of feedbacks from land and water, estimates of future ice melt rates, sea level rise rates, rates of methane release from permafrost and the extent of fires in enhancing atmospheric CO₂, and the already observed onset of ocean cooling south of Greenland and fringes of Antarctica freeze events need to be quantified. According to Hansen et al. (2016) ice mass loss would raise sea level by several meters in an exponential rather than linear response even within the 21st century. According to Rignot et al. (2011) the Greenland and Antarctic ice sheets experienced in 2006 a combined mass loss of 475 ± 158 billion tons per year.

According to a Met Office briefing evaluating the implications of the UN report, once we go past 1.5°C, we dramatically increase the risks of floods, droughts, and extreme weather that would impact hundreds of millions of people. According to the IPCC this would just be the beginning: as we are currently on track to hit 3-4°C by end of century (Figure 9), which would lead to a largely unlivable planet (Ahmed, 2018). The progressive melting of Greenland and the Arctic Sea ice, formed in the Pliocene approximately 3.6-2.2 million years ago when CO₂ levels were about 560-400 ppm (Stone et al. 2010). Future climate model projections by the IPCC (Figure 9) contain a number of significant departures from observations based on the paleoclimate evidence. This includes factors related to amplifying feedbacks from land and water, ice melt rates, temperature trajectories, sea level rise rates, methane release rates, the role of fires, and observed onset of transient stadial (freeze) events. As the Earth continues to heat, cold air masses breach the Arctic boundary and move southward and warm air penetrates into the Arctic, temperature contrasts between polar and subpolar climate zones decrease, further weakening the polar divide. Temperature contrasts between Arctic-derived cold air masses and subtropical air masses result in an increase in the intensity and frequency of extreme weather events.

Figure 9. IPCC AR5: Time series of global annual mean surface air temperature anomalies relative to 1986–2005
from CMIP5 (Coupled Model Inter-comparison Project) concentration-driven experiments.
Projections are shown for each RCP for the multi model mean (solid lines) and the 5–95% range
(±1.64 standard deviation) across the distribution of individual models (shading) (Easterbrook 2014).⁽⁴⁾

As the Earth warms, the increase in temperature contrasts across the globe, and thereby an increase in storminess and extreme weather events, occurring at present, need to be taken into account when planning adaptation measures, including preparation of coastal defenses, construction of channel and pipelines from heavy precipitation zones to draught zones. A non-linear climate warming trend, including stadial freeze events, bears significant implications for planning future adaptation efforts, including preparations for transient deep freeze events in parts of Western Europe and eastern North America for periods lasting several decades (Figure 7) and coastal defenses against enhanced sea levels and storms. In Australia this should include construction of water pipelines and channels from the flooded north to parched regions such as the Murray-Darling basin.

_________________________
² Hysteresis: The phenomenon in which the value of a physical property lags behind changes in the effect causing it, as for instance when magnetic induction lags behind the magnetizing force.
³ The Anthropocene is a proposed epoch dating from the commencement of significant human impact on the Earth's 
geology and ecosystems. https://en.wikipedia.org/wiki/Anthropocene
⁴ Steve Easterbrook, New IPCC Report (Part 6). Azimuth. https://johncarlosbaez.wordpress.com/2014/04/16/what-does-the-new-ipcc-report-say-about-climate-change-part-6/
https://oceanservice.noaa.gov/facts/rossby-wave.html
https://www.dw.com/en/understanding-the-polar-vortex/a-17347788


Andrew Glikson
Dr Andrew Glikson
Earth and Paleo-climate science, Australia National University (ANU) School of Anthropology and Archaeology,
ANU Planetary Science Institute,
ANU Climate Change Institute,
Honorary Associate Professor, Geothermal Energy Centre of Excellence, University of Queensland.

Books:
The Archaean: Geological and Geochemical Windows into the Early Earth
The Asteroid Impact Connection of Planetary Evolution
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence


References

• Ahmed N. (2018) The UN's Devastating Climate Change Report Was Too Optimistic. Motherboard.
https://motherboard.vice.com/en_us/article/43e8yp/the-uns-devastating-climate-change-report-was-too-optimistic

• Arctic Report Card (2018) Tracking recent environmental changes relative to historical records.
https://www.arctic.noaa.gov/Report-Card

• Berwyn B (2016) Wobbly Jet Stream Is Sending the Melting Arctic into 'Uncharted territory. Inside Climate News.
https://insideclimatenews.org/news/08062016/greenland-arctic-record-melt-jet-stream-wobbly-global-warming-climate-change

• Camille Li, Born A. (2019) Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events Quaternary Science Reviews 203, 1-20.
https://www.sciencedirect.com/science/article/pii/S0277379118305705

• Climate Council (1918) The good the bad and the ugly: limiting temperature rise to 1.5°C.
https://www.climatecouncil.org.au/resources/limiting-temperature-rise/

• Cortese G, Abelmann A, Gersonde A (2007) The last five glacial‐interglacial transitions: A high‐resolution 450,000‐year record from the sub-Antarctic Atlantic. Paleogeography and Paleoclimatology (22) Part 4.
https://www.researchgate.net/publication/228524417_The_last_five_glacial-interglacial_transitions_A_high-resolution_450000-year_record_from_the_subantarctic_Atlantic

• Easterbrook S (2014) New IPCC Report (Part 6). Azimuth.
https://johncarlosbaez.wordpress.com/2014/04/16/what-does-the-new-ipcc-report-say-about-climate-change-part-6/

• Francis J (2019) How frigid polar vortex blasts are connected to global warming: The National Weather Service is warning of brutal, life-threatening conditions. Salon, January 2019.
https://www.salon.com/2019/01/31/how-frigid-polar-vortex-blasts-are-connected-to-global-warming_partner/

• Gasson E. et al. (2016) Dynamic Antarctic ice sheet during the early to mid-Miocene. PNAS March 29, 2016 113 (13) 3459-3464.
https://www.pnas.org/content/113/13/3459

• Ganopolski A, Rahmstorf S. (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409 (6817)153-8.
https://www.ncbi.nlm.nih.gov/pubmed/11196631

• Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449.
https://www.atmos-chem-phys.net/11/13421/2011/acp-11-13421-2011.html

• Hansen J. et al. (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmos. Chem. Phys. 16, 3761-3812.
https://johncarlosbaez.wordpress.com/2014/04/16/what-does-the-new-ipcc-report-say-about-climate-change-part-6/

• Hansen J. (2018) Climate Change in a Nutshell: The Gathering Storm.
http://www.columbia.edu/~jeh1/mailings/2018/20181206_Nutshell.pdf

• IMBIE Team (2017) Mass balance of the Antarctic Ice Sheet from 1992 to 2017.
https://www.nature.com/articles/s41586-018-0179-y.epdf?referrer_access_token=S5Y_R-7foKDe_0LTC1ePHNRgN0jAjWel9jnR3ZoTv0PBEKqWHTwARrIrR4OxoHFd5WZGh-A0FX8FPbkdWIZLYWSZXdrY6PsBEIhQw8kfzqY8CzRUyWao-gOmRlMtURwKL_LY17cUVdlgmtWLaRk_EWhFILoJdJyawITzJhU3y8fPcoosWQQMgEN2fv3kQx_S8JT4BLn4bheLaGZaYfD6J64pzwLO1V5h5TxsI6J4qUimPnWHm2Ax0DoQjYvfEgChVqY1nI8d3M_kRuObyJedPw%3D%3D&tracking_referrer=www.abc.net.au

• IPCC (2018) Global warming of 1.5°C.
https://www.ipcc.ch/sr15/

• IPCC Working Group I, IPCC (2018) The Scientific Basis.
https://archive.ipcc.ch/ipccreports/tar/wg1/416.htm ;
https://www.ipcc.ch/working-group/wg1/?idp=408

• IPCC (2018) Ice-Free Arctic in Pliocene, Last Time CO₂ Levels above 400 PPM.
https://www.scientificamerican.com/article/ice-free-arctic-in-pliocene-last-time-co2-levels-above-400ppm/

• Kaspar, F, Spangehl T, and Cubasch U (2007). Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception. Clim. Past 3, 181–192.
http://moraymo.us/wp-content/uploads/2018/03/Rovereetal_PNAS_2017.pdf

• Lenton T.M. et al. (2008) Tipping Elements - the Achilles Heels of the Earth System. Potsdam Institute of Climate Impact Research.
https://www.pik-potsdam.de/services/infodesk/tipping-elements/kippelemente

• Levy R. et al. (2016) Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. PNAS 29, 113(13):3453-3458.
https://www.pnas.org/content/113/13/3453

• NASA (2018) Global Temperature: Latest annual average anomaly 2018.
https://climate.nasa.gov/vital-signs/global-temperature/

• NOAA (2018) Arctic report card.
https://www.arctic.noaa.gov/report-card
https://www.theguardian.com/environment/live/2018/oct/08/ipcc-climate-change-report-urgent-action-fossil-fuels-live

• Rahmstorf S. et al. (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change volume 5:475–480.
https://www.nature.com/articles/nclimate2554

• Rignot E et al. (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38 (5).
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011GL046583

• Roverea A et al. (2017) Giant boulders and Last Interglacial storm intensity in the North Atlantic. Proc. Am Acad Sci 114 (46) 12144-12149.
http://moraymo.us/wp-content/uploads/2018/03/Rovereetal_PNAS_2017.pdf

• Schellnhuber H. J. (Ed.) (2009). Tipping Elements in Earth Systems. Special Feature. PNAS 106, 20561-20621.
https://www.pnas.org/content/106/49/20561

• Smith D.E. et al. (2011) The early Holocene sea level rise. Quaternary Science Reviews 30 (15–16) 1846-1860.
https://www.sciencedirect.com/science/article/abs/pii/S0277379111001211

• Stone E.J. et al. (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. The Cryosphere 4, 397-417.
https://www.the-cryosphere.net/4/397/2010/tc-4-397-2010-discussion.html

• Tripati A, Darby D. (2018) Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice. Nature communications 1038.
https://www.nature.com/articles/s41467-018-03180-5

• Velicogna I, Sutterley T. C. van den Broeke M. R. (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data. Geophysical Res Lett 41(22) 8130-8137.
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014GL061052

• Wallace-Wells D, (2019) The Uninhabitable Earth: A Story of the Future. Penguin Books, 320 pp.
https://www.penguin.com.au/books/the-uninhabitable-earth-9780241400517