Showing posts with label hurricane. Show all posts
Showing posts with label hurricane. Show all posts

Thursday, November 1, 2012

Hold on folks… the times they are a-changin’

Melting Arctic sea ice aims Frankenstorm Sandy directly at the Big Apple
Paul Beckwith,
B.Eng, M.Sc. (Physics),
Ph.D. student (Climatology)
and Part-time Professor,
University of Ottawa
 
by Paul Beckwith

Frankenstorm Sandy is a scary beast. A hybridization between a tropical hurricane and a mid-latitude cyclone, her behavior is not natural at all. Moving northward off the east coast, Sandy is turning left toward land instead of right toward the sea. Sandy’s being blocked from moving north by a high pressure area of enormous magnitude, and being sucked west by a low pressure region of very exceptional (and highly unusual) strength.

Thus the designation “Frankenstorm”.

Because the Earth rotates on its axis, circulating air deflects toward the left in the Southern Hemisphere and to the right in the Northern Hemisphere. This deflection is called the Coriolis Effect and explains why storms in the northern hemisphere generally always turn to the right. Sandy should be turning right.
The Coriolis Effect - image credit: NOAA

So why is Sandy turning left towards the U.S. east coast? That’s where meteorology comes in - and the meteorology is now a lot different thanks to climate change. How so?

As I wrote in my last blog, push something and it moves a little … push it a little more and it moves a little more. This is called a “linearity” response. But sometimes a little push can lead to something totally unexpected! This is called “nonlinearity” and, contrary to what one might think, nonlinearities are inherent in most systems - like our atmosphere. Until recently, our atmosphere and oceans behaved like linear systems: incremental dumping of greenhouse gases into the atmosphere caused incremental changes, like rising temperatures and predictable rates of ice melt. But things are now changing unexpectedly fast – nonlinearity is kicking in! Make no mistake about it, Frankenstorm Sandy IS a nonlinearity event; totally unpredicted and totally unprecedented - the latest example of global weirding.

For the first time in at least 3 million years, the Arctic icecap will soon completely disappear. Without it, sunlight that would normally reflect back out to space will be absorbed by the water - warming it and the air above it. The old climate models predicted the Arctic Ocean wouldn't be ice-free for 30 years or more, but now we know it could be gone in as little as 3 years (and no more than 7). When this happens, the temperature differential (between the Northern and Southern hemispheres) will be reduced even further, and in short time.

NASA image with data from the U.S. Defense Meteorological Satellite Program’s Special Sensor Microwave/Imager.
The line on the image shows the average minimum extent from the period covering 1979-2010, as measured by satellites. 
Meteorology 101 shows us this change (reduction) in the temperature differential slows west-to-east winds and jet streams. And as fast jet streams slow, they become much wavier and travel much more north and south (this is contributing to the large high pressure area we are seeing directly north of Hurricane Sandy and large low pressure area over the United States).

If you think this storm is bad, get used to it. Frakenstorms like Sandy will become commonplace, the new norm, as it were.

As I write this blog for Sierra Club Canada, Frankenstorm Sandy maintains (and may even be gaining) strength as she approaches the U.S. coast. She’s expanded in size so much that gale force winds are now covering an area over 1500 km in diameter.

Sandy is now the largest hurricane ever recorded in the Atlantic basin. Her winds have reached 150 kilometers per hour and her barometric pressure has dropped to 940 millibars (among the lowest pressure ever measured anywhere in the continental United States).

As I’ve been predicting in my blog since August, hold on folks… the times they are a-changin’.

NOAA's GOES-13 satellite captured this image of Hurricane Sandy on Oct. 28 at 1302 UTC (9:02 a.m. EDT).
The line of clouds from the Gulf of Mexico north are associated with the cold front that Sandy is merging with.
Sandy's western cloud edge is already over the mid-Atlantic and northeastern U.S. (Credit: NASA GOES Project)
Originally posted October 29, 2012, at Sierra Club Canada; posted here with author's permission

Monday, October 29, 2012

Climate Change Sandy Says to US: 'Take That, Idiots!'

By Nathan Currier


Superstorm Sandy shows signature of human-induced climate change 

Nathan Currier, senior climate advisor for Public Policy Virginia

After the second presidential debate, moderator Candy Crowley said, "Climate change -- I had that question, all you climate change people. We just -- you know, again, we knew that the economy was still the main thing, so you knew you kind of wanted to go with the economy." And the media's been talking about low information voters?

Now, along comes Sandy, who says to Candy, "Okay, then, take that!" See, Sandy doesn't get into debating these things, either. Now, let's see what Sandy's bill ends up being -- anyone taking bets? -- then let's sit down and talk some economy. In fact, there's an idea: Maybe a new American pastime could be organized 'disaster gambling,' with states collecting revenue as everyone bets on the tab for each new upcoming climate change disaster in their respective states?

Perhaps some still take issue with the suggestion that a superstorm like this is caused by our human-engendered climate change. But cigarette packages say things like, "cigarettes cause fatal lung disease." This, of course, is just shorthand, a monumental simplification, because in fact causation in complex systems is always a vastly complicated affair, and tobacco companies spent lots of money blowing smoke in the face of all that complexity: but the likelihood of getting lung disease is so greatly increased by smoking that eventually they gave up and we all agreed to go 'low-info' by just saying cigarettes cause fatal lung disease. As I'll demonstrate, in much the same way, we might as well keep it simple and just say this superstorm is caused by our human-made climate change.

I've been writing on the arctic crisis, and in a recent long list of immediate physical changes from loss of summer arctic sea ice, I listed (as #12) its potential impacts on weather at lower latitudes. It so happens that it is just at this time of year that this has the clearest line of causation, since lots of heat and moisture enter the atmosphere from the open waters that had been ice covered, and latent heat is released in the refreezing process, which progresses rapidly as the arctic cools down right around now. As Jennifer Francis of Rutgers University described in a recent paper: "This warming is clearly observable during autumn in near-surface air temperature anomalies in proximity to the areas of ice loss."

And this in turn becomes very important for large-scale atmospheric circulation. For example, Dr. Francis has used the metaphor of a river going down a steep incline, which runs straight, versus a river that runs along a flat plain, which tends to meander. Likewise the jet stream, since the normal energy gradient between arctic air and that of lower latitudes has become more relaxed in tandem with ice extent drops, is tending to meander more, and hence move more slowly as well. As the Francis paper said, "Previous studies support this idea: weaker zonal-mean, upper-level wind* is associated with increased atmospheric blocking events in the northern hemisphere." [*she means high west-east moving winds]

Let's look back again at this superstorm, and you'll see that important features of what you're about to experience stem from the arctic situation I've been discussing. First, arctic air is coming down to hook up with Sandy from the dip of the jet stream. Francis writes (from personal communication),
"The huge ice loss this summer, and subsequent enhanced warming of the Arctic (see attached figure), may be playing an important role in the evolution of Sandy by enhancing the amplitude of waves in the jet stream."

At the same time, high pressure over Greenland, and the extremely negative state of the North Atlantic Oscillation, is creating a blocking event that is impacting the path of Sandy herself, sending her back west over the U.S. Again, Dr. Francis (in personal communication):
"In this case, the effects could be causing strengthening of the block, elongating the block northward, and/or increasing its duration -- and this block is what's driving Sandy on such an unusual track westward into the mid-Atlantic coast."

Now, let's add to all that the underlying and obvious thing -- that Sandy is only surviving as a hurricane so far north, almost in November, because there are record high sea surface temperatures off the U.S. East coast right now. And while the third storm component, the one coming in from the west, might seem less remarkable, that is also something that generally becomes more probable with global warming, as our atmosphere can hold more water vapor as it warms and the evaporation rate is also increased by the warming. Thus, all major components of this superstorm show the signature of human-induced climate change to varying degrees, and without global warming the chance of the three occurring together like this would have a probability of about zero. So, let's make it simple, and just say climate change caused this storm.

I'm in New York City, just as much in the path of Sandy as so many others are, but come on, you do just have to sit back and love it, appreciate the full irony of it all, with Sandy striking right at those most sensitive loins of our American democracy, threatening to interrupt our sacred electoral process, after that process blocked climate change out, and now an atmospheric blocking pattern, created by that very climate change, pushes Sandy back on us. In a time when climate silence trumps climate science, when the candidates seem terrified to mention the 'C-word,' Candy, I hope you enjoy meeting Sandy. Maybe if the election gets as messed up as 2000, you three can even find time to meet up again, and go over a little issue you couldn't quite find time to fit in before? In my next piece I'll get back back to discussing what we should do right away, and hopefully it will at least be a bit clearer that this is serious business.

[First posted at the Huffington Post; posted with author's permission]

Friday, October 26, 2012

Hurricane Sandy moving inland

Hurricane Sandy is moving inland and its impact is forecast to be felt as far away as in Toronto and Ottawa.

Coastal Watches/Warnings and 5-Day Track Forecast Cone
Hurricane SANDY Advisory #019       11:00 PM EDT Fri October 26, 2012
from:  National Hurricane Center (check link for updates!)



Paul Beckwith,
B.Eng, M.Sc. (Physics),
Ph.D. student (Climatology)
and Part-time Professor,
University of Ottawa
 
This prompted Paul Beckwith to make the following comments:

All storms veer to the right in the northern hemisphere due to the spinning of the earth (1 revolution per day). Except when there is a tilted high pressure region northward and it has to go left and there is a massive low pressure region left that sucks it there as well. 

Why the high pressure ridge and massive low pressure? Because the jet stream is wavier and slower, a situation that is happening more and more often, because of massive sea ice decline this summer. Which is due to Arctic amplification feedbacks. Which in turn is due to rising greenhouse gases. Which is due to humans.

The situation is further illustrated by the image below, from ClimateCentral.

An atmospheric "blocking pattern" will push Sandy north, then northwestward, into the Mid-Atlantic or Northeast. Click to enlarge the image.     Credit: Remik Ziemlinski, Climate Central.
In an earlier post, Paul Beckwith described that a very rare cyclone churned up the entire Arctic region for over a week in early August 2012, destroying 20% of the ice area by breaking it into tiny chunks, melting it, or spitting it into the Atlantic. Cold fresh surface water from melted sea ice mixed with warm salty water from a 500 metre depth! Totally unexpected. A few more cyclones with similar intensity could have eliminated the entire remaining ice cover. Thankfully that didn't happen. What did happen was Hurricane Leslie tracked northward and passed over Iceland as a large storm. It barely missed the Arctic this time. Had the storm tracked 500 to 600 kilometres westward, Leslie would have churned up the west coast of Greenland and penetrated directly into the Arctic Ocean basin.

We dodged a bullet, at least this year. This luck will surely run out. What can we do about this? How about getting our politicians to listen to climatologists, for starters.

Below, rainfall forecast from the Hydrometereological Prediction Center of the National Weather Service - check the link for updates! 




Related

- Vanishing Arctic sea ice is rapidly changing global climatearctic-news.blogspot.com/2012/09/vanishing-arctic-sea-ice-is-rapidly-changing-global-climate.html

- Storm enters Arctic region

- Huge cyclone batters Arctic sea ice
arctic-news.blogspot.com/2012/08/huge-cyclone-batters-arctic-sea-ice.html