Showing posts with label extreme weather. Show all posts
Showing posts with label extreme weather. Show all posts

Friday, September 8, 2017

Extreme weather is upon us


Extreme weather is upon us. Global warming is increasing the intensity, occurrence, size, duration and impact of many catastrophic events, including wildfires, droughts, heat waves, cold snaps, storms, lightning, flooding and seismic events such as earthquakes and associated tsunamis.

Ever larger numbers of people are getting hit directly by such events, as well as indirectly due to lack of fresh water, food, shelter, medicine, health care and emergency services.

Many lives were lost and many further lives are at stake. In a September 11, 2017, statement, AccuWeather predicts the joint economic costs of Hurricane Harvey and Hurricane Irma to be $290 billion, or 1.5% of the U.S. GDP.

The following three images show Hurricane Irma (left) and Hurricane Jose (right), and are forecasts for September 10, 2017. The image directly below shows that waves are forecast to be as high as 48 ft (or 14.63 m).

Waves for September 10, 2017, 15:00 UTC (at green circle, 26°N, 80°W) are forecast as high as 48 ft or 14.63 m
The image below shows that winds are forecasts to be as fast as 163 mph (or 263 km/h).

Winds for Sept. 10, 2017, 12:00 UTC (green circle, 25.5°N, 80.5°W, 850 hPa) forecast as fast as 163 mph or 263 km/h
The image below shows that as much as 6.59 in (or 167.4 mm) of rain is forecast.

As much as 6.59 in (or 167.4 mm) of rain is forecast for Sept. 10, 2017, 6:00 UTC (3-hour accumulation, green circle)
Forecasts were posted widely, such as the image below that was posted at facebook.


Earlier, Hurricane Harvey hit Houston. Again, warnings were posted widely, such as the forecast below, posted at facebook.

[ click on images to enlarge ]
There is no doubt that people's emissions are causing global warming and that this is causing more extreme weather to occur across the world.

Extreme weather is amplified by changes to the Jet Streams. As the Arctic is warming more rapidly than the rest of the world, the temperature difference between the Arctic and the Equator is narrowing, which is slowing down the speed at which the Jet Streams circumnavigate the globe.

The Coriolis Effect makes Jet Streams circumnavigate the globe horizontally, and this used to keep cold air inside the Arctic and warmer air outside of the Arctic.

As the Jet Streams circumnavigate the globe at lower speeds, they increasingly move more vertically, allowing cold air from the Arctic to move down south more easily, and warm air to move up north more easily. This can make it easier for cyclones to move land-inward, where they previously would have kept following a path over the sea. This can also make it easier for weather conditions to stay the same for many days in an area, allowing huge amounts of rain water to accumulate in such an area.

This is illustrated by the image on the right, showing Jet Streams crossing the Equator at speeds as fast as 82 km/h or 51 mph (at the location marked by the green circle, at 250 mb) on August 27, 2017, 21:00 UTC. The image also shows Jet Streams crossing the Arctic at multiple locations.

Furthermore, numerous cyclones are visible on the image. As Earth retains more energy, winds and currents are getting stronger, waves are getting higher, etc., while higher temperatures are also causing winds to carry more moisture. This is especially the case for cyclones that are also stronger due to high sea surface temperatures.

The image below shows Hurricanes Jose, Irma and Katia lining up over the Atlantic Ocean on September 7, 2017.


The image below shows the hurricanes lining up over the Atlantic Ocean on September 8, 2017.


The image below shows Hurricane Jose off the coast of North America and Hurricane Maria underneath, with winds as fast as 149 mph or 241 km/h (at 850 hPa) and as much as 7.92 inch or 201.1 mm of rain (3-hour precipitation accumulation) at the location marked by the green circle.


In the video below, Paul Beckwith discusses the situation.


There can be many interactions between such events. Seismic events such as earthquakes, landslides and associated tsunamis, can be triggered by human activities in several ways.

Seismic events triggered by human activities

• Earthquakes can be triggered by fracking and by pools associated with fracking.
• Warming caused by people makes snow and ice melt, removing weight off the land and dumping it into the sea. This change in weight can trigger earthquakes.
• The Earth's crust can be flexed by storms. Large cyclones first suck up water, making sea level retreat and lifting up the crust. Then, a surge follows, while huge amounts of rainwater can add further weight, pushing the crust down again. This change can be felt over longer distances, triggering earthquakes across continents.
• Wild weather swings can be the result of changes in the jet streams caused by global warming. Huge sudden swings in temperature and in air pressure can make soils and ice go abruptly from expansion to compression and back again, which can cause cracks and landslides, and associated shockwaves, which can in turn trigger larger seismic events and open up methane craters with can come with large releases of methane.

After Sandy hit New York, in 2012, earthquakes hit the coast off Vancouver and links between the two events were discussed in this post.

Hurricane Harvey caused massive flooding in several States. The weight of the torrential rains brought by Hurricane Harvey caused Houston to sink by 2 centimeters. Water weighs about a ton per cubic meter and the flooding was so widespread that it "flexed Earth's crust", NASA scientist Chris Milliner said. 

An earthquake with a magnitude of 8.1 on the Richter scale hit at 69.7 km depth, off the coast of Mexico, 87km SW of Pijijiapan, on September 8, 2017 at 04:49:21 UTC, at 15.068°N 93.715°W.


Numerous aftershocks are visible on the map below (screenshot taken September 13, 2017).



Rising temperatures are increasing the amount of water vapor in the atmosphere at a rate of 7% more water vapor for every 1°C warming. This is further speeding up warming, since water vapor is a potent greenhouse gas. Over the coming years, a huge amount of additional water vapor threatens to enter the atmosphere, due to the warming caused by albedo changes in the Arctic, methane releases from the seafloor, etc., as described at this page.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.

Hurricane Damage Mitigation

A 2014 study by scientists led by Mark Jacobson calculates that large turbine arrays (300+ GW installed capacity) could diminish peak near-surface hurricane wind speeds by 25–41 m/s−1 (56–92 mph) and storm surge by 6–79% AND provide year-round clean and renewable electricity.

How many electric cars will be ready to move into Miami to provide emergency support in the wake of Hurricane Irma?

Storms can cause power outages, electricity poles can get damaged. Electricity poles can also be a traffic hazard (i.e. collisions can occur even if the pole hasn't fallen down, especially when streetlights fail). When damaged, power lines hanging off poles constitute electrical shock hazards and they can cause fires to ignite and wildfires to start.

Storms can also cause damage to backup generators and to fuel storage tanks, making it hard for emergency services to give the necessary support. Electric cars can supply electricity where needed, e.g. to power necessary air conditioning, autoclave and emergency equipment, such as in hospitals. After a tsunami hit Japan in 2011, electric cars moved in to provide electricity from their batteries, as described in many articles such as this one.

Wind turbines and solar panels are pretty robust. Hurricane Harvey hit the Papalote Creek Wind Farm near Corpus Christi, Texas. The wind farm had little or no damage, there was just a short delay in restarting, mostly due to damage to power lines. The Tesla roof that doubles as solar panels is much stronger than standard roofs. Have a look at this video.

Join the Renewables group at facebook!
Clean and renewable energy can provide more stable, robust and safe electricity in many ways. Centralized power plants are vulnerable, in that all eggs are in one basket, while there can be long supply and delivery lines. Many of the benefits of clean and renewable energy are mentioned on above image.

Furthermore, there are ways to lower sea surface temperatures. The image on the right shows the very high sea surface temperature anomalies on August 28, 2017.

Note the colder area (blue) in the Gulf of Mexico. Hurricane Harvey cooled the sea surface as water evaporated and warm moisture was added to the atmosphere. The cyclonic force also mixed colder water below the surface with warmer water at the surface, resulting in colder water at the surface. The combination image below shows the difference between August 20, 2017, and August 30, 2017.

[ click on images to enlarge ]

A number of geoengineering methods can be used to reduce sea surface temperatures and thus reduce the intensity of hurricanes. Methods include upwelling associated with ocean fertilization and with ocean tunnels, marine cloud brightening and increasing and brightening bubbles in the wake of vessels, as discussed at the geoengineering group at facebook.

Besides cooling the sea surface, there's also the upwelling of nutrients that can help combat ocean stratification. Warm water holds less oxygen than cold water. As the water warms, it also tends to form a layer at the surface that does not mix well with cooler, nutrient-rich water below, depriving phytoplankton of some of the nutrients needed in order for phytoplankton to grow (and take up carbon).

Some of these methods are also discussed at this 2011 page, which also mentions that more research is needed into the impact of such methods. Of course, possible application should go hand in hand with dramatic reductions in emissions including a rapid shift to 100% clean and renewable energy.

thesolutionsproject.org
Similarly, the necessary shift to clean and renewable energy in itself will not be enough to avoid catastrophic warming, and it should go hand in hand with further lines of action to remove pollution and to cool the Arctic Ocean, as described at the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• How much warming did and could people cause?
https://arctic-news.blogspot.com/p/how-much-warming-did.html

• Did Sandy trigger major earthquakes off Vancouver?
https://arctic-news.blogspot.com/2012/11/did-sandy-trigger-major-earthquakes-off-vancouver.html

• Geophysicist: Weight of Harvey rains caused Houston to sink
https://phys.org/news/2017-09-geophysicist-weight-harvey-houston.html

• As Harvey breaks rainfall record, Houston imposes a curfew and death toll climbs to 18
http://www.latimes.com/nation/la-na-texas-harvey-20170829-story.html

• Historic Hurricane Harvey's Recap
https://weather.com/storms/hurricane/news/tropical-storm-harvey-forecast-texas-louisiana-arkansas

• Hurricane Katia strikes Mexico, killing at least two, as the nation still reels from a massive earthquake
http://www.latimes.com/world/mexico-americas/la-fg-mexico-earthquake-20170909-story.html

• Deadly quake and Hurricane Katia a one-two punch for Mexico (September 8, 2017).
Updated: Death toll now at 90 as aftershocks rattle southern Mexico (September 11, 2017).
http://www.sfchronicle.com/news/world/article/Deadly-quake-Hurricane-Katia-a-one-two-punch-for-12184833.php

• AccuWeather predicts economic cost of Harvey, Irma to be $290 billion
https://www.accuweather.com/en/weather-news/accuweather-predicts-economic-cost-of-harvey-irma-to-be-290-billion/70002686

• After Disaster Hit Japan, Electric Cars Stepped Up
http://www.nytimes.com/2011/05/08/automobiles/08JAPAN.html

• In Big Test of Wind Farm Durability, Texas Facility Quickly Restarts After Harvey
https://www.wsj.com/articles/texas-wind-farm-back-online-1504294083

• Tesla Unveils Powerwall 2 & Solar Roof
https://www.youtube.com/watch?time_continue=802&v=4sfwDyiPTdU&fref=gc&dti=2372679678

• Taming hurricanes with arrays of offshore wind turbines, by Mark Z. Jacobson et al. (2014)
https://www.nature.com/nclimate/journal/v4/n3/full/nclimate2120.html

• The Solutions Project
http://thesolutionsproject.org

• Weakening of hurricanes via marine cloud brightening (MCB), by John Latham, Ben Parkes, Alan Gadian, Stephen Salter (2012)
https://onlinelibrary.wiley.com/doi/10.1002/asl.402/abstract

• Multiple Benefits Of Ocean Tunnels
https://arctic-news.blogspot.com/2015/02/multiple-benefits-of-ocean-tunnels.html

• Oxygenating the Arctic
https://arctic-news.blogspot.com/p/oxygenating-arctic.html

• Reducing hurricane intensity using arrays of Atmocean Inc.'s wave-driven upwelling pumps
https://www.youtube.com/watch?v=xlnR_GMNIGA

• Could bright, foamy wakes from ocean ships combat global warming?
https://www.sciencemag.org/news/2016/01/could-bright-foamy-wakes-ocean-ships-combat-global-warming



Saturday, October 11, 2014

Climate Change Accelerating

Methane levels as high as 2562 ppb were recorded on October 9, 2014, as illustrated by the image below.

Many grey areas show up in the image where QC (quality control) failed, as it was too hard to read methane levels in the respective area, apparently due to high moisture levels (i.e. snow, rain or water vapor) in the atmosphere.


As above image illustrates, cloud cover is high over the Arctic, while there is also precipatation in the form of snowfall.

In other words, high levels of methane (above 1950 ppb, colored yellow) could be present over a much larger part of the Arctic Ocean, while methane in these grey areas could be even higher than the measured peak level of 2456 ppb.

This appears to be confirmed by persistent high methane levels over vast areas across the Arctic Ocean both in the morning (top part of the image further above) and in the afternoon (bottom part of image) on 9 October 2014.

Methane levels are this high over the Arctic Ocean for the number of reasons, including:
  • The Gulf Stream keeps pushing warm water into the Arctic Ocean.
  • The resulting eruptions of methane from the seafloor of the Arctic Ocean constitute a feedback that accelerates warming in the Arctic. 
  • As the Arctic warms up more rapidly than the rest of Earth, the Arctic's ice and snow cover will decline, further accelerating warming in the Arctic.
  • As the Arctic warms up more rapidly than the rest of Earth, the speed at which jet streams circumnavigates the Northern Hemisphere will weaken, making it meander more, resulting in a greater frequency and intensity of extreme weather events, such as heat waves, droughts and wildfires. 
Here's an example of intense warming. Look at what is currently happening on Greenland.

As the image above right shows, sea surface temperature anomalies as high as +1.89°C hit the North Atlantic (on October 8, 2014). 

Furthermore, high cloud cover over the Arctic (image further above) makes it hard for the heat there to radiate out into space, further contributing to high temperature anomalies.

The image on the right shows high temperature anomalies over Greenland and parts of the Arctic Ocean on October 11, 2014. Note that anomalies are averaged out over the course of the day (and night).

The image below (right) shows anomalies at the top end of the scale hitting large parts of Greenland at a specific time during this day. The left part of the image below shows how this could happen, i.e. jet streams curling around Greenland trapping warm air inflow from the North Atlantic.


As said, as the Arctic warms up more rapidly than the rest of Earth, the speed at which jet streams circumnavigate the Northern Hemisphere will weaken, making the jets meander more and creating patterns that can trap heat (or cold) for a number of days over a given area. Due to the height of its mountains, Greenland is particularly prone to be increasingly hit by heatwaves resulting from such blocking patterns. Warming changes the texture of snow and ice, making it more slushy and darker, which also makes that it absorbs more of the sunlight's heat, further accelerating melting.

As Paul Beckwith warns in an earlier post, melt rates on Greenland have doubled in the last 4 to 5 years, and melt rates on the Antarctica Peninsula have increased even faster. Based on the last several decades, melt rates have had a doubling period of around 7 years or so. If this trend continues, we can expect a sea level rise approaching 7 meters by 2070.

From: More than 2.5 m sea level rise by 2040
These are all indications that the pace of climate change is accelerating in many ways, the most dangerous one being ever larger methane eruptions from the Arctic Ocean's seafloor. As the image below shows, sea surface temperature anomalies are very high in the Arctic Ocean, indicating very high temperatures under the surface.



U.S. Secretary of State John Kerry recently said: “There are now – right now – serious food shortages taking place in places like Central America because regions are battling the worst droughts in decades, not 100-year events in terms of floods, in terms of fires, in terms of droughts – 500-year events, something unheard of in our measurement of weather.” Warning about looming catastrophe, Kerry adds: “Life as you know it on Earth ends. Seven degrees increase Fahrenheit (3.9°C), and we can't sustain crops, water, life under those circumstances.”

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.




Monday, June 16, 2014

Warming of the Arctic Fueling Extreme Weather

Extreme weather

Heavy rains and floods hit Serbia and Bosnia in May 2014, as discussed in an earlier post.

Later in May, further flooding hit central Europe. From May 30 to June 1, 2014, parts of Austria received the amount of rain that normally falls in two-and-half months: 150 to 200 mm (5.9 to 7.9"), with some parts experiencing 250 mm (9.8").

What is fueling this extreme weather? Have a look at the image below.



The image shows a number of feedbacks that are accelerating warming in the Arctic. Feedback #14 refers to (latent) heat that previously went into melting. With the demise of the snow and ice cover, an increasing proportion of this heat gets absorbed and contributes to accelerated warming in the Arctic.

As the sea ice heats up, 2.06 J/g of heat goes into every degree Celsius that the temperature of the ice rises. While the ice is melting, all energy (at 334J/g) goes into changing ice into water and the temperature remains at 0°C (273.15K, 32°F). 

Once all ice has turned into water, all subsequent heat goes into heating up the water, at 4.18 J/g for every degree Celsius that the temperature of water rises.

The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C. The energy required to melt a volume of ice can raise the temperature of the same volume of rock by 150º C.

Currently, the energy equivalent of 1.5 million Hiroshima bombs goes into melting of the Arctic sea ice each year, according to calculations by Sam Carana.

As the ice disappears, this energy will instead be absorbed elsewhere and cause temperatures in the Arctic to rise further, indicated as feedback #14.

This comes on top of the albedo feedback #1 that can on its own more than double the net radiative forcing resulting from the emissions caused by all people of the world, according to calculations by Prof. Peter Wadhams.

Further feedbacks include changes to the polar vortex and jet stream that are in turn causing more extreme weather, as also described in the earlier post Feedbacks in the Arctic.


Global Warming

Higher levels of greenhouse gases are trapping more heat in the atmosphere, resulting in more intense heatwaves in some places, while stronger winds and greater evaporation of water from the sea lead to stronger rainfall in other places. Global warming thus contributes to more extreme weather around the globe.

The Arctic is hit not only by the warming resulting from greenhouse gas emissions, but also by emissions of soot, dust and other compounds that settle on the snow and ice cover and speed up its demise.

As illustrated by the image below, by Nuccitelli et al., most heat goes into the oceans. A substantial amount of heat also goes into the melting of ice.

A lot of ocean heat is transported by the Gulf Stream into the Arctic Ocean. The North Atlantic is hit particularly strongly by pollution from North America, as illustrated by the image below.

[ screenshot from Perdue University's Vulcan animation ]
Heat carried by the Gulf Stream into the Arctic Ocean contributes to high sea surface anomalies in the Arctic, as illustrated by the image below. Arctic sea ice is under threat from heat from the North Atlantic, while heat from the Pacific Ocean that was in part caused by pollution from east-Asia is now threatening to enter the Arctic Ocean through the Bering Strait, as illustrated by the image below that shows areas with sea surface temperature anomalies well over 8 degrees Celsius. 

[ click on image to enlarge ]
Warmer water in the Arctic Ocean in turn causes methane to be released from the seafloor of the Arctic Ocean, as discussed further below. 


Accelerated Warming in the Arctic

As said, warming hits the Arctic particularly strongly due to feedbacks such as albedo changes caused by the demise of the snow and ice cover in the Arctic. Another feedback is a changing jet stream. The jet stream used to circumnavigate the globe at high speed, separating climate systems that used to be vastly different above and below the jet stream. Accelerated warming in the Arctic is decreasing the temperature difference between the Arctic and the Equator, in turn causing the jet stream to slow down and become wavier. As a result, air can more easily move north to south and visa versa, especially when the jet stream's waves expand vertically and take a long time to move from west to east (i.e. a blocking pattern).

These changes to the jet stream are fueling extreme weather events. In the May/June event, a large loop had developed in the jet stream over Europe and got stuck in place, making a strong southerly wind carry moisture-laden air from the Mediterranean Sea over Central Europe, clashing with colder air flowing down from the north as the jet stream was stuck in such a blocking pattern.

Record May heat hit northern Finland and surrounding regions of Russia and Sweden. Earlier in May (on May 19) an all-time national heat record was set of 91.4°F (33.0°C) in St. Petersburg, Russia, slashing the previous record by a wide margin. This temperature was unprecedented in records in St. Petersburg that started in 1881 and show a previous May record set in 1958 of 87.6°F (30.9°C).

The compilation below shows the jet stream on three days (May 24, 25 and 27), on top of surface temperature anomalies for those days.

[ click on image to enlarge ]

Further illustrating the event is the animation below, showing the jet stream from May 26 to June 11, 2014. Note that this is a 14.5 MB file that may take some time to fully load.

[ click on image to enlarge ]
Methane

Huge methane emissions took place from the seafloor of the Arctic Ocean from September 2013 to March 2014. These emissions have meanwhile risen up higher in the atmosphere and have moved closer to the equator.


Compared to June 2013, mean methane levels at higher altitudes are now well over 10 ppb higher at higher altitudes while there has been only little change closer to the ground. Since these mean levels are global means, the difference is even more pronounced at specific locations on the Northern hemisphere, where clouds of methane originating from the Arctic are contributing to the occurence of heat waves.

The contribution of methane to such heatwaves depends on the density of the methane at the time in the atmosphere over the location during such events.

Highest global mean methane levels varied from 1907 ppb to 1812 ppb for the period June 6 to 15, 2014, as illustrated by the image on the right, and peak methane concentration varied a lot from day to day. On June 6, 2014, peak readings as high as 2516 ppb were recorded.

Indicative for what can be the result is the temperature anomaly on May 19, when temperatures went up as high as 91.4°F (33.0°C) in St. Petersburg, Russia, slashing the previous record by a wide margin, of more than 2°C, as described above


Conclusion

The situation is the Arctic is threatening to escalate into runaway warming and urgently requires comprehensive and effective action as discussed at the Climate Plan blog.


References

- May 2014 Global Weather Extremes Summary

- Extreme Jet Stream Pattern Triggers Historic European Floods
http://www.wunderground.com/blog/JeffMasters/extreme-jet-stream-pattern-triggers-historic-european-floods


Related posts

- The Biggest Story of 2013
http://arctic-news.blogspot.com/2013/12/the-biggest-story-of-2013.html

- Climate Plan
http://climateplan.blogspot.com
- More extreme weather can be expected
http://arctic-news.blogspot.com/2014/05/more-extreme-weather-can-be-expected.html

- Extreme weather strikes around the globe - update
http://arctic-news.blogspot.com/2014/02/extreme-weather-strikes-around-the-globe-update.html

- Escalating extreme weather events to hammer humanity (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/04/escalating-extreme-weather-events-to-hammer-humanity.html

- Our New Climate and Weather (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/01/our-new-climate-and-weather.html

- Our New Climate and Weather - part 2 (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/01/our-new-climate-and-weather-part-2.html

- Changes to Polar Vortex affect mile-deep ocean circulation patterns
http://arctic-news.blogspot.com/2012/09/changes-to-polar-vortex-affect-mile-deep-ocean-circulation-patterns.html

- Polar jet stream appears hugely deformed
http://arctic-news.blogspot.com/2012/12/polar-jet-stream-appears-hugely-deformed.html




Saturday, April 5, 2014

Escalating extreme weather events to hammer humanity


By Paul Beckwith

Extreme weather events are rocketing upwards in their frequency of occurrence, intensity, and duration and are impacting new regions that are unprepared. These events, such as torrential rains, are causing floods and damaging crops and infrastructure like roads, rail, pipelines, and buildings. Cities, states, and entire countries are being battered and inundated resulting in disruption to many peoples lives as well as enormous economic losses. As bad as this is, it is going to get much worse by at least 10 to 20 times. Why?

Greenhouse gas emissions from humans have changed the chemistry of the atmosphere. The optical absorption of infrared heat has increased in the atmosphere which raises temperature, and thus water vapor content, and therefore fuels more intense storms. The jet streams that guide these storms are slower and wavier and more fractured and cause our weather gyrations and weird behavior. Areas far north can get very warm, while areas far south can get very cold. Some areas get persistent drought. Then, the pattern can flip. The jet streams are much wavier in the north-south direction since the Arctic temperatures have warmed 5 to 8 times faster than the global average. This reduces the temperature difference between the Arctic and equator and basic physics forces the jets to slow and get wavier.

Why is the Arctic warming greatly amplified? The region is darkening and thus absorbing more sunlight, since the land-based snow cover in spring and the Arctic sea ice cover volume are both declining exponentially. The white snow and ice is being replaced by dark surfaces like the ocean and the tundra. The most detailed computer model on sea ice decline is a U.S. Naval Graduate School model, and it shows the sea ice cover could be gone by late summer in 2016. If this happens, the Arctic warming will rocket upwards, the jets will distort much more, and the extreme weather events will rocket upwards in frequency, amplitude, and duration and civilization will be hammered.


Paul Beckwith
Paul Beckwith is part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. Paul teaches climatology/meteorology and does PhD research on 'Abrupt climate change in the past and present'. Paul holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life. Below are Paul's earlier posts at the Arctic-news blog.

Thursday, October 24, 2013

Are Alberta’s Tar Sands prepared for a torrential rain event?

by Paul Beckwith

In recent months we have endured incredible tropical-equatorial-like torrential rain events occurring at mid-latitudes across the planet. For example, in North America we experienced intense rainfall in the Banff region of the Rockies from June 19th to 24th and the enormous volume of water moved downhill through the river systems taking out small towns and running into the heart of Calgary where it caused $5.3 billion dollars of infrastructure damage; the largest in Canadian history.

Next, it was Toronto’s turn, with 75 mm of rain falling from 5 to 6pm on July 8 (with up to 150 mm overall in some regions) leading to widespread flooding and $1.45 billion dollars in damages. As bad as these events were, they were dwarfed by the intense rainfalls hitting the state of Colorado from Sept 9th to 15th.

Rainfall amounts that would normally fall over 6 months to a year were experienced in less than a week. Widespread flash floods, landslides, and torrents of water ripped apart roads, fracking equipment and pipelines on (at least) hundreds of fossil fuel sites (mostly ignored by mainstream media) (http://www.desmogblog.com/2013/09/19/media-ignores-damaged-oil-and-gas-tanks-colorado-floods). The level of destruction was simply horrifying, as captured by a man with a plane and a camera. But we have no grounds for complaint, since the widespread flooding in central Europe from May 30th to June 6th caused a much larger $22 billion in damages.

So what is happening? Why are we experiencing so many of these severe weather flooding events that are supposed to only occur every 1000 years or so? Will they keep occurring? What city will be hit next? Can the Alberta tar sands be hit by such an event? What would be the implications?

Abrupt Climate Change In Real-Time

Humans have benefited greatly from a stable climate for the last 11,000 years - roughly 400 generations. Not anymore. We now face an angry climate. One that we have poked in the eye with our fossil fuel stick and awakened. Now we must deal with the consequences. We must set aside our differences and prepare for what we can no longer avoid. And that is massive disruption to our civilizations.

In a nutshell, the logical chain of events occurring is as follows:
  1. Greenhouse gases that humans are putting into the atmosphere from burning fossil fuels are trappingextra heat in the earth system (distributed between the oceans (93%), the cryosphere (glaciers, ice sheets, sea ice for 3%), the earth surface (rocks, vegetation, etc. for 3%) and the atmosphere (only an amazingly low 1%). The oceans clearly get the lions share of the energy, and if that 1% heating the atmosphere varies there can be decades of higher or lower warming, as we have seen recently. This water vapor rises and cools condensing into clouds and releasing its stored latent heat which is increasing storm intensity.
  2. (i)Rapidly declining Arctic sea ice (losing about 12% of volume per decade) and (ii)snow cover (losing about 22% of coverage in June per decade) and (iii)darkening of Greenland all cause more solar absorption on the surface and thus amplified Arctic warming (global temperatures have increased (on average) about 0.17oC per decade, the Arctic has increased > 1oC per decade, or about 6x faster)
  3. Equator-to-Arctic temperature difference is thus decreasing rapidly
  4. Less heat transfer occurs from equator to pole (via atmosphere, and thus jet streams become streakier and wavier and slower in west-to-east direction, and via ocean currents (like Gulf Stream, which slows and overruns continental shelf on Eastern seaboard of U.S.)
  5. Storms (guided by jet streams) are slower and sticking and with more water content are dumping huge torrential rain quantities on cities and widespread regions at higher latitudes than is “normal”.
  6. A relatively rare meteorological event called an “atmospheric river” is now much more common, and injects huge quantities of water over several days to specific regions, such as Banff (with water running downhill to Calgary) and Toronto and Colorado events.
It is well past the time that politicians and governments need to act to address these issues. This breakdown of the global atmospheric circulation pattern is well underway now, with a global average temperature only 0.8oC above the pre-industrial revolution levels. With extreme weather events this terrible now, it is highly irrational, in fact reckless, to continue to have global meetings and discussions about whether or not 2oC is safe. Only 0.8oC is wreaking havoc on global infrastructure today. As climate change proceeds and accelerates and we move further from the stable state that we are familiar with (“old climate”) to a much warmer world (“new climate”) we will experience worsening weather extremes and a huge “whiplashing” of events (throughout our present “transition period”).

For a notion of whiplashing, consider the Mississippi River. There were record river flow rates from high river basin rainfall in 2011, followed by record drought and record low river water levels in December, 2012 making it necessary for the U.S. Army Corp of Engineers to hydraulically break apart rock on the riverbed to keep the countries vital economic transportation link open to barge traffic. Then, 6 months later, the river was back up to record levels. Incredible swings of fortune.

Mitigation at a global level is dysfunctional and inadequate

Adaption has not worked out too well for Calgary, or Toronto, or Colorado, or numerous other places. Let us not be surprised when a similar torrential rain event hits Ottawa, or Vancouver, or even the Alberta tar sand tailing ponds. In Alberta, tailings ponds would be breached and the toxic waters would overflow the Athabasca River and carry the pollutants up into the north to exit into the Arctic Ocean. Such an event would be catastrophic to the environment and economy of Canada.

How can this risk be ignored? Will the latest IPCC (Intergovernmental Panel on Climate Change) report AR5 released on September 27th once again be ignored by society?


Paul Beckwith is a part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. He teaches second year climatology/meteorology. His PhD research topic is “Abrupt climate change in the past and present.” He holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life.

Thursday, August 8, 2013

The Social Tipping Point



by Paul Beckwith

Abrupt Climate Change is happening today, big time!

Abrupt climate change. It is happening today, big time. The northern hemisphere atmospheric circulation system is doing its own thing, without the guidance of a stable jet stream. The jet stream is fractured into meandering and stuck streaked segments, which are hoovering up water vapor and directing it day after day to unlucky localized regions, depositing months or seasons worth of rain in only a few days, turning these locales into water worlds and trashing all infrastructure like houses, roads, train tracks and pipelines. Creating massive sinkholes and catastrophic landslides. And climate change is only getting warmed up.

In the Arctic methane is coming out of the thawing permafrost. Both on land and under the ocean on the sea floor. The Yedoma permafrost in Siberia is now belching out methane at greatly accelerated rates due to intense warming. The collapsing sea ice in the Arctic Ocean is exposing the open ocean to greatly increased solar absorption and turbulent mixing from wave action due to persistent cyclonic activity. Massive cyclonic activity will trash large portions of the sea ice if positioned to export broken ice via the Fram Strait.

We have lost our stable climate

What does it all mean? There is no new normal? Far from it. We have lost our stable climate. Likely permanently. Rates of change are greatly exceeding anything in the paleorecords. By at least 10x, and more likely >30x. We are heading to a much warmer world. The transition will be brutal for civilization.

Can we avoid this? Stop it? Probably not? At least with climate reality being suppressed by corporations and their government employees. With their relentless push for more and more fossil fuel infrastructure and mining and drilling.

What else can we expect as we negotiate our abrupt transition in climate to a much warmer world?

Craziness, in a nutshell. Temperatures over land surfaces in the far north have been consistently over 25 C for weeks, due to persistent high pressure atmospheric blocks leading to clear skies and unblocked solar exposure. Water temperatures in rivers and streams in the far north have resulted in large fish kills as their ecological mortality thresholds have been exceeded. Many other regions are experiencing strange incidences of animal mortality. Mass migrations of animals towards the poles are occurring on land and sea, at startling rates, in an effort for more hospitable surroundings for survival. Shifting food source distributions is causing even hardier, less vulnerable species to be severely stressed. For example, dolphins are being stranded or dying, birds are dropping out of the sky, and new parasites and bacteria are proliferating with warmer temperatures.

In regions of the world undergoing severe droughts the vegetation and soils are drying and fires are exploding in size, frequency, and severity. Especially hard-hit are large regions of the US southwest, southern Europe, and large swaths of Asia. Who knows if forests that are leveled by fire will eventually be reforested; it all depends on what type of climate establishes in the region.

What about coastal regions around the world and sea levels? Not looking too good for the home team. In 2012 Greenland tossed off about 700 Gt (Gt=billion tons) of sea ice, from both melting and calving. As the ice melts it is darkening from concentrated contaminants being exposed, from much greater areas of low albedo meltwater pools, and from fresh deposits of black carbon ash from northern forest fires. Even more worrying are ominous signs of increasing movement. GPS sensor anchored to the 3 km thick glaciers hundreds of km from the coast are registering increased sliding. Meltwater moulins are chewing through the ice from the surface to the bedrock and are transporting heat downward, softening up the ice bonded to the bedrock and allowing sliding. Eventually, large chunks will slide into the ocean causing tsunamis and abrupt sea level rises. Many regions of the sea floor around Greenland are scarred from enormous calving episodes in the past.

The Social Tipping Point

On a positive note, this knowledge of our changing climate threat is filtering out to greater numbers of the slumbering public that has been brainwashed into lethargy by the protectors of the status quo. As more and more people see the trees dying in their back yards and their cities and houses and roads buckling under unrelenting torrential rains they are awaking to the threat. And there will be a threshold crossed and a tipping point reached in human behavior. An understanding of the reality of the risks we face. And finally global concerted action. To slash emissions. And change our ways. And retool our economies and reset our priorities. And not take our planet for granted.



Paul Beckwith is a part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. He teaches second year climatology/meteorology. His PhD research topic is “Abrupt climate change in the past and present.” He holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life.


The above compilation of IPCC and NOAA images is by Peter Carter, who adds the following comment:
I agree. The IPCC in 2007 said: "The concentration of CO2 is now 379 parts per million (ppm) and methane is greater than 1,774 parts per billion (ppb), both very likely much higher than any time in at least 650 kyr (during which CO2 remained between 180 and 300 ppm and methane between 320 and 790 ppb). The recent rate of change is dramatic and unprecedented; increases in CO2 never exceeded 30 ppm in 1 kyr – yet now CO2 has risen by 30 ppm in just the last 17 years."

By definition this is abrupt heating. because atmospheric GHG concentration correlates directly with radiative forcing. CO2 is now 397 ppm and methane is now 1830 ppb ! It follows that the rate of ice being melted will also (as it looks) be unprecedented. The only force we have against mad fossil fuel pushing governments is accountability. They have to be made to face the full terrible consequences of their action on energy and inaction on climate. They are destroying the world.

Wednesday, January 30, 2013

Extreme Weather Warning


Above image is from NOAA Storm Prediction Center, with Convective Watches in red. 

Below, storm reports, from the same site. 


For an update on the current situation in your area, see:

Meanwhile, in Canada, Paul Beckwith gives more background on 'Our rapidly changing climate and weather'.

Paul Beckwith
Part-time professor, PhD student (abrupt climate change), Department of Geography
Location: University of Ottawa, in the hub next to the university bookstore
Description:
Not a typical January in Ottawa. 10 degrees C for several days one week; -30 the next; followed by 10 the one after that. Why?

Normally the high altitude jet streams that circle the planet are predominantly from west to east with little waviness. Weather is cold and dry northward of the jets (Arctic air sourced) and warm and wet southward (moist tropics and ocean sourced). Now, and moving forward, the jets are extremely wavy and as the crests and troughs of the waves sweep by us each week we experience the massive swings in temperature. The extreme jet waviness is due to a very large reduction in the equator-to-Arctic temperature gradient caused by an exponentially declining Arctic reflectivity from sea-ice and snow cover collapses (which causes great amplification of Arctic temperatures). Additional amplification is occurring due to rapidly rising methane concentrations sourced from sea-floor sediments and terrestrial permafrost.

Observed changes will accelerate as late summer sea-ice completely vanishes from Arctic within a few years. Largest human impacts will be food supply shortages and increases in severity, frequency, and duration of extreme weather events.

In the video below, by Gzowski Films, Paul Beckwith speaks on our radical weather patterns. 

Wednesday, December 5, 2012

Arctic anomalies linked to extreme weather

Surface temperature anomalies of 20 degrees Celsius are not uncommon in the Arctic these days. The image below shows surface temperature anomalies on November 9 and 10, 2012.


Paul Beckwith, regular contributor to this blog, comments as follows on the conditions in the Arctic:
“The Arctic meteorology is unprecedented at the moment. Huge ridges of high pressure are crossing the Arctic ocean cutting off the Siberian cold region from the North American region. Very little cold air is present in the entire system, and it is exhibiting very bizzare fragmentation. Nothing like a “normal” polar vortex is apparent.

The ridge could just be due to this greatly reduced volume of cold air, but I suspect there is much more to the situation then that. It seems that there must be some source of heat to create this ridge. Could be warm air rising up from open water regions in the Arctic, however most of the warm water is now isolated from the atmosphere by the sea ice.

It seems more likely to me that the high levels of methane with GWP > 150 or higher are causing higher long-wave absorption and heating in these regions, but I have not seen methane concentration distributions over the Arctic from AIRS satellites lately.”
So, let's have a look at the methane levels for those days. The image below shows the methane levels for the above two days.


Paul continues:
“This is what abrupt climate change looks like. In the paleorecords global average temperatures increased over 6 degrees C within a decade or two, I suppose we will know more precise numbers in a few short years.”

Paul repeats the prediction he made back in June in this the post When the sea ice is gone
Paul Beckwith, B.Eng, M.Sc. (Physics),
Ph. D. student (Climatology) and
Part-time Professor, University of Ottawa
My projections for our planet conditions when the sea-ice has all vanished year round (PIOMAS graph projects about 2024 for this; I forecast 2020 for this) are:
  • Average global temperature: 22°C (+/- 1°C)
    (rise of 6-8°C above present day value of about 15°C)
  • Average equatorial temperature: 32°C
    (rise of 2 °C above present day value of 30°C)
  • Average Arctic pole temperature: 10°C
    (rise of 30°C above present day value of -20°C)
  • Average Antarctica pole temperature: -46°C
    (rise of 4°C above present day value of -50°C)
  • Water vapor in atmosphere: higher by 50%
    (rise of 4% over last 30 years, i.e. about 1.33% rise per decade)
  • Average temperature gradient from equator to North pole: 22°C
    (decrease of 28°C versus present day value of 50°C)
  • Very weak jet streams (driven by N-S humidity gradient and weak temperature gradient as opposed to existing large temperature gradient)

- Result: very fragmented, disjointed weather systems
- Basic weather: tropical rainforest like in some regions; arid deserts in others with few regions in between.

Note: This scenario would require significant emissions of methane from the Arctic. Without this methane, the scenario would still occur but would take longer. Disclaimer: Best guess and subject to rolling revisions!

Meanwhile, extreme weather continues to strike areas outside the Arctic. In the U.K, airports were closed due to snow, following a period of heavy rainfall in November.

In Russia, extreme weather caused a huge traffic jam; see the BBC reports here and here, prompting Veli Albert Kallio, also one of this blog's contributors, to make the following comments:
Veli Albert Kallio in front of Peter Wadhams and John Nissen at
APPCCG event, March 13, 2012, House of Commons, London
“The Ewing-Dunn Precipitation (the lake-effect snow) from warmed-up Arctic Ocean has taken the Russian Government's winter preparations by suprise of its severity, with the Russian Government minister banging his fist as standing queues of vehicles reoccurs and is now 190 kilometres (120 miles) long between the capital Moscow and St. Petersburg.

I have been warning from the leaked files since July at this and other groups that December 2012 was going to be like this. We need to tell the Russian Interior Minister who bangs his fist on TV that he should not blame his road officials, but the global warming and loss of sea ice from the Barents and Kara Seas and generally warmed up North Atlantic - Arctic Ocean regions.”